Design Guidelines
for
Historic Apartment
&
Multifamily Buildings
in
Salt Lake City
CREDITS

Planning Department Staff
Nora Shepard, Director of Planning
Wilford Sommerkorn, Previous Director of Planning
Cheri Coffey, Assistant Director of Planning
Joel Paterson, Planning Manager
Michaela Oktay, Planning Manager
Carl Leith, Senior Planner
Janice Low, Senior Planner
Richard Decker, Planning Intern
Alan Trejo, Graphic Designer

Salt Lake City Historic Landmark Commissioners
Earle Bevins III (DGs Sub-Committee)
Tom Brennan
Arla Funk
Sheleigh Harding, Chair
Polly Hart, Vice-Chair
Stephen James (DGs Sub-Committee)
Robert McClintic (DGs Sub-Committee)
David Richardson
Charles Shepherd (DGs Sub-Committee)
Heather Thuet

Former Salt Lake City Historic Landmark Commissioners
Anne Oliver, Historic Preservation Consultant, Previous Chair
Warren Lloyd, Lloyd Architects, Previous Chair
Dave Richards, Dave Richards Architects

OTHER RESOURCES

PART I Historic Context, Architectural Types & Styles
Much of the material in this section, including photographs and diagrammatic sketches, draws from the research and analysis carried out by Thomas Carter and Peter Goss, published in 1988 as *Utah's Historic Architecture, 1847-1940*, and is used here with their kind permission. Other background, including quotes on pages 4:3 & 4:4, is taken from the research and multiple property documentation carried out by Roger Roper, Utah State Historical Society, 1987-9. The summary section on Principal Apartment Types & Styles (pp 4.6 & 4.7) is reused here from the *Design Guidelines for Residential Historic Districts in Salt Lake City* prepared by Winter & Company with Clarion Associates, adopted in 1999. The latter also forms part of the *Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City*, adopted in 2012.

PART II Chapter 12 New Construction

PART III Apartment & Multifamily Development in Historic Districts
The material in Chapters 13 to 18 covering apartment and multifamily development in the historic districts is drawn from reconnaissance level surveys and national register district nominations between 1995 and 2013, and is specifically referenced in each chapter.

All other photographs were taken by Carl Leith, Senior Planner - Historic Preservation, Salt Lake City Corporation, and include Salt Lake City, Berkeley CA, Charleston SC, Denver CO, Edinburgh, Minneapolis MN, New York, Portland OR, Salem OR

April 7, 2015
PART I - PRESERVATION IN SALT LAKE CITY
Section 1  Why Preserve Historic Buildings & Neighborhoods
Section 2  The Preservation Program in Salt Lake City
Section 3  The Design Guidelines
Section 4  Historic Context, Architectural Types & Styles

PART II - DESIGN GUIDELINES: REHABILITATION / GENERAL / NEW CONSTRUCTION
Chapter 1  Site Features & Streetscapes
Chapter 2  Building Materials & Finishes
Chapter 3  Windows
Chapter 4  Doors & Entries
Chapter 5  Porches & Balconies
Chapter 6  Building Form, Facade Design, Architectural Elements & Details
Chapter 7  Roof Forms & Parapets
Chapter 8  Additions
Chapter 9  Accessory Structures (Garages, Carports, Ancillary Structures)
Chapter 10  Seismic Retrofitting
Chapter 11  General Issues
Chapter 12  New Construction

PART III - HISTORIC DISTRICTS - APARTMENT & MULTIFAMILY BUILDINGS
Chapter 13  The Avenues
Chapter 14  Capitol Hill
Chapter 15  Central City
Chapter 16  South Temple
Chapter 17  University
Chapter 18  Westmoreland Place

PART IV - DESIGN PRINCIPLES & GUIDELINES FOR SUSTAINABLE DEVELOPMENT

APPENDICES
Appendix A  Salt Lake City Historic Design Standards & Secretary of the Interior’s Standards
Appendix B  Information & Resources - Arranged by Subject, Key Websites, Preservation Briefs
Appendix C  Glossary of Terms - Procedural & Technical Definitions, Architectural Terms

Design Guidelines for Historic Apartment & Multifamily Buildings
PART I
PRESERVATION IN SALT LAKE CITY

Section 1  Why Preserve Historic Buildings & Neighborhoods  1 : 1-5
Section 2  The Preservation Program in Salt Lake City  2 : 1-13
Section 3  The Design Guidelines  3 : 1-10
Section 4  Historical Context & Architectural Styles  4 : 1-20
The John and Emily Platts home at 364 Quince Street. Platts was an English stone mason who came to Salt Lake in 1854 and built this house four years later. When the current owners purchased the house in 1975, it was in the state of disrepair seen in the right photograph. Over the years, they have renovated it so that it is a functional house for their family, while preserving the historic character of the home.
1 Why Preserve Historic Buildings & Neighborhoods?

Across the nation, citizens appreciate historic and architectural character as being essential to the identity and unique character of their communities. They promote historic preservation because to do so is essential to cultural, social, economic and environmental sustainability. Historic resources are key ingredients in neighborhood livability and quality of life, minimizing negative impacts on the environment and yielding economic vitality and reward.

In an increasingly fast-paced, anonymous and ‘placeless’ form of urban development, the individual character of each community is a precious identity. This identity helps to create a sense of stability and enables an understanding of how this unique character, itself a product of incremental development over time, can provide a direction and inspiration for the form of future development.

Many residents and businesses are also drawn to historic buildings and neighborhoods because the quality and richness of design, construction, craftsmanship and materials, are typically very high; buildings that are readily adaptable to contemporary needs. Salt Lake City is no exception, and has a series of visually rich and individual residential historic neighborhoods and commercial buildings.

The historic environment is the cultural landscape of our community. It represents the historical documentation of the incremental evolution of our society and neighborhoods. These ‘pages’ document the city, reflecting the many thousands of decisions which together have created Salt Lake City’s urban environment, from a cultural legacy representing many countries, and many families, and many skills, and many values.
Culture, Quality of Life & Livability

When groups of older buildings occur as a historic district, they can create a local environmental character which is so much greater than the sum of its parts. The district is defined on a human scale, which encourages walking and neighborly interaction. Mature trees and landscaping, stone walls and decorative architectural composition and features contribute to its sense of individuality. That identity is unique to each historic neighborhood, is increasingly rare, and is impossible to design into a new development or urban area.

This physical sense of neighborhood cohesion can enhance community stability, reinforce desirable social patterns and networks, and contribute to a sense of reassurance and security. Many residents of historic districts, for example, note how easily they get to know their neighbors, and enjoy the fact that they are recognized by others who live in the vicinity.

Older homes and neighborhoods provide housing in a variety of sizes, serving a wide range of housing needs and desires. Within these residential neighborhoods small businesses developed, providing needed services and creating a rich legacy of architecture, usually as individual commercial buildings which are designed in scale with the houses. Many continue in commercial use today.

Maintaining these historic settlement patterns and original fabric preserves the setting from which residents learn about and explore our culture. Our historic neighborhoods are effectively a kaleidoscope of local, regional and global family lineage and cultural backgrounds. This ‘stage’ or ‘classroom’ provides a foundation of knowledge for our current and future identity, understanding and achievement.

A Sense of History, Identity & Art

Once the basic needs of existence and survival are met, humanity needs more to enhance its experience. There is a need to enrich the everyday experiences of living and working with a sense of history, time and art.

The historic neighborhoods and buildings of Salt Lake City provide a sense of maturity and permanence that can be apparent and also elusive. Why do these streets take this form, and who laid them out? Who designed and built this building, and who first lived here? What happened here, and when? Who decided to alter this part of the house, and why? What color was the house originally?

A principal reason to live in one of the more historic parts of our city is not solely connected to proximity to downtown, walkability and property investment. It is also directly related to the values and experience sought in visiting a historic city or site on vacation. It has to do with the elevation and refreshment that comes from the experience of a living work of art and architecture and is in itself a contribution to the present and future quality and richness of the neighborhood and city.


www.nps.gov/history/nr/publications/index.htm
www.nps.gov/history/nr/preservation_links.htm
1 Why Preserve Historic Neighborhoods

Economic Vitality & Employment

Historic resources are finite and cannot be replaced, making them precious commodities that many people hold in high regard today.

Preservation tends to enhance the attraction and appreciation of neighborhoods and the value of private property. Studies across the nation have documented that, where local historic districts are established, property values typically appreciate faster, or at very least are stabilized where they might have been previously declining. In this sense, designation of a historic district appears to establish a climate for enhanced stability, civic pride, and further personal investment in the area. (See references on this page.)

Residents within the district know that the time and money they spend on improving their properties are likely to be matched with similar commitment and efforts on surrounding properties. These investments will not be undermined by overscaled or otherwise inappropriate construction next door, or nearby. They consequently tend to have a multiplier effect in terms of neighborhood character and desirability.

The condition of neighboring properties affects the value of one’s own property. People invest in a neighborhood at least as much as in the individual structures themselves. Investment in a historic district is often more attractive, with property owners recognizing that each owner benefits from the commitment of other neighbors. An indication of the success of preservation would be the more than 1.4 million resources that are listed on the National Register of Historic Places; including, sites, districts, structures, and objects.

[NPS, 6/2011, www.cr.nps.gov/nr/about.htm]

In terms of local economic vitality and employment, preservation projects contribute more to the local economy than do new building programs. Each dollar spent on a preservation project has a higher percentage devoted to labor, usually local skilled labor, and to the purchase of materials available locally. By contrast, new construction typically has a higher percentage of each dollar devoted to materials or components that are usually produced outside of the local economy, and merely assembled on site. Consequently, when money is spent on rehabilitating a building, it has a higher local “multiplier effect,” keeping more money circulating for longer in the local economy, when compared with new construction.

Rehabilitating a historic building frequently costs less than constructing a new one, aside from the costs arising from any demolition. In fact, the guidelines for rehabilitation of historic structures presented in this document promote cost-saving measures. They encourage smaller and simpler solutions, which in themselves provide savings. Preserving building elements that are in good repair is preferred to replacing them. Preservation and repairs are also typically less expensive.

In some instances, however, appropriate restoration procedures may cost more than less sensitive treatments, although they are likely to endure much longer. In such cases, property owners are compensated for this extra effort, to some extent, in the added value that historic district or landmark designation provides. Special economic incentives also exist to help offset potential added costs where they do arise.
Mobility & Transportation

Living in a more historic neighborhood helps reduce the city resident’s dependence upon the car for everyday needs. Older neighborhoods are close to the business, retail, cultural and employment centers in the downtown area, the very reasons prompting their initial development. Residents were and are able to live closer to where they work, avoiding or minimizing the need to use the car.

The greater concentration and walkability provided by these urban residential neighborhoods also enhances the economic viability of public transportation as a convenient and less expensive alternative to the car. This settlement pattern was initially directly influenced by the city’s street car network and now supports its re-emergence. There are the further benefits of enhanced air quality through a reduction in gasoline use and toxic exhaust emissions, poor air quality being a persistent issue along the Wasatch Front from early development periods to the present.

Sustainability & the Environment

Preserving a historic structure makes sound environmental conservation policy and practice.

Maintaining the use of a building is the ultimate in recycling since no demolition waste is generated, no processing of materials is required, and no energy consumed. No new construction materials are required, avoiding the energy, waste and pollution from manufacturing, and avoiding energy use for transportation and construction.

The embodied energy which was used to create the original building and its components is preserved and reinvested. Old buildings have a great deal of embodied energy. The extraction and processing of building materials (e.g., wood, stone, and brick), the transportation of those materials, and the construction labor represented in the final structure, mean that demolition of an existing building and constructing anew is notably less energy-efficient than rehabilitating or constructing an addition for the existing building. Conserving a building preserves its embodied energy and reduces the need for new materials. Demolition waste alone accounts for 25% of waste in municipal landfills every year.

Older buildings (up to 1920s) are, as a rule, as energy efficient as those buildings built today under increasingly stringent energy efficiency requirements. They are more energy-efficient than buildings constructed from the 1920s to the 1990s. These inherent advantages can be further enhanced through an understanding of the materials, the construction and the essential qualities of traditional design and craftsmanship. Thick, solid, heat-retaining walls in brick and stone, with access to natural ventilation, contribute to their excellent energy efficiency. Historic buildings can also benefit from new technology in the form of solar panels or shingles.
The Quality of Design & Construction

Design, building and craft skills gradually focused on Salt Lake City from many parts of the world. New residents often brought with them centuries-old traditions in construction and the arts, and frequently an appreciation of urban and architectural sophistication. This coincidence of culture, sophisticated design and traditional craft skills is reflected in the earlier development of the city.

Most of the historic structures in the city are of high design and construction quality. The wood used for example came from mature old growth trees, was carefully seasoned and was typically milled to full dimensions, yielding stronger and more durable framework, cladding, windows, trim and details. Masonry walls were carefully laid, resulting in buildings with considerable stability, and refined, delicate and precise detailing.

Our historic buildings were thoughtfully and traditionally embellished and detailed, while the materials and finishes, including fixtures, wood floors and trim were generally of high quality; all characteristics which are now increasingly rare, and highly sought and appreciated.

By comparison, in today’s new construction, materials of such quality are rarely available and comparable detailing, if achievable, is very expensive. The high quality of design and construction in historic buildings is consequently a significant asset, with notable durability and needing minimal basic maintenance.

Adaptability

Historic building floor plans tend to be readily adaptable, accommodating contemporary life-styles and supporting a diversity of requirements. Rooms are frequently large, permitting a variety of uses while retaining the overall historic character of each building. In residential areas private open space often exists on the lot to accommodate an addition, if needed. In commercial buildings the space tends to be both flexible and varied, and usually comes with a significant identity and architectural character, factors which are usually very attractive for small business.

A number of larger residences have been adapted for business use.

Sustainability
www.nps.gov/tps/sustainability.htm

Energy Efficiency
www.nps.gov/tps/sustainability/energy-efficiency.htm

New Technologies
www.nps.gov/tps/sustainability/new-technology.htm

Case Studies
www.nps.gov/tps/sustainability/case-studies.htm#fuller-paint

Research
www.nps.gov/tps/sustainability/research.htm

Resources
www.nps.gov/tps/sustainability/resources.htm

National Trust for Historic Preservation. Weatherization
www.preservationnation.org/issues/weatherization/

National Trust for Historic Preservation. Sustainability
www.preservationnation.org/issues/sustainability/
www.preservationnation.org/issues/sustainability/green-lab/
2 The Preservation Program in Salt Lake City – Defining and Managing Historic Buildings and Districts

**Historic Preservation Plan - Draft**

The Historic Preservation Plan for Salt Lake City, developed over several years by consultants and the City, establishes city-wide policies, goals, objectives and action priorities for the Historic Preservation Program. This is the first such comprehensive review and evaluation of the program in Salt Lake City, and will provide common direction for future city policy. The Plan is currently (early 2012) in Draft form.

**National & Local Register Designations**

Like most communities, Salt Lake City has two categories of historic district and landmark sites. It is important to understand and distinguish the city’s designation of historic districts through its local ordinance process, from historic designation to the National Register of Historic Places.

**National Register of Historic Places**

The National Register of Historic Places is a list of sites and properties of historic significance. Properties on the Register may have national significance, but they may also be listed if they have significance at a state or local level. The National Park Service administers the Register. Nominations are submitted through the State Historic Preservation Officer, using criteria adopted by the Secretary of the Interior. Listing in the National Register is a recognition and status that is honorary and does not involve city review of proposed exterior alterations. National Register designation brings recognition, research knowledge and, in appropriate cases for buildings defined as ‘contributing,’ Federal and State tax incentives.

Properties listed on the National Register may be eligible for federal and/or state income tax credit incentives. Additionally, federal actions that may affect these properties must be reviewed for their potential impact. Alterations are not reviewed if the property owner is not seeking income tax incentives or if no federal actions are involved. In such cases, there are no regulations governing compatible alterations, infill or demolition.
Local Historic Districts

The local designation process is established through the city’s zoning ordinance. Criteria for designation are set forth in the City code and designated properties are subject to regulations outlined in the ordinance, including demolition, and design review standards for new construction and exterior alterations to existing buildings. These guidelines inform the design review process for exterior alterations, additions and new construction for local historic districts and City designated landmark buildings, providing detail, clarification and options for the design review standards in the ordinance. They also provide information resource and guidance in planning a project affecting these areas, sites and buildings.

Certified Local Government (CLG) Status

Salt Lake City has agreed to support the principles of the Secretary of the Interior’s Standards for Rehabilitation of Historic Buildings in a contract with the State Historic Preservation Officer. [See Appendix A and below] In that contract, the city received status as a “Certified Local Government,” under the National Historic Preservation Act. This act provides that a local government, when it meets certain guidelines for operation of a preservation program, may become so certified and therefore become eligible for technical and financial assistance to administer its preservation activities.

Policies & Ordinance Standards

Underlying the Design Guidelines

The forthcoming Historic Preservation Plan will provide comprehensive policy and an implementation action plan for the preservation program in the city, in the light of nationally accepted preservation standards, and an evaluation of the current and potential historic and cultural resources of the city. The residential, multifamily, commercial and sign design guidelines form a key part of the array of tools available to the City in the role of caring for these assets.

The design guidelines are founded on the goals for preservation as stated in the Salt Lake City Zoning Ordinance Title 21A of the Salt Lake City Code, Chapter 34.020 “Purpose Statement.” These preservation goals provide direction to projects affecting landmark sites or within a historic district.

The guidelines are intended to be used in a number of ways. Property owners and architects should use the guidelines when beginning a project. City staff will use the guidelines when advising property owners and in administrative reviews. The Historic Landmark Commission (HLC) will use the guidelines in review when considering the issuance of a Certificate of Appropriateness.

The low, horizontal lines of bungalow design and its landscaped setting are mutually complementary.
The guidelines are based on the criteria and design standards set forth in Chapter 34.020 of Title 21A, of the Salt Lake Code, the city zoning ordinance, which provides for the creation and management of historic preservation overlay districts and landmarks.

The design guidelines, and the ordinance design standards, incorporate principles set out in the Secretary of the Interior’s Standards for Treatment of Historic Properties, a nationally accepted set of basic preservation design principles, standards and guidelines. It is the intent of this document to be compatible with the Secretary of the Interior’s Standards, and to clarify, amplify and interpret those essential preservation principles, whether at the project planning and design stage, or in the subsequent design review and approval process.

Compliance with the ordinance standards is enforced through the city’s permitting and inspection processes, including the building permit review system. Property owners should recognize that most projects require a building permit, which is issued by the city’s building official, in addition to the Certificate of Appropriateness that is issued by the HLC, or Planning Division staff on its behalf.

**Additional Incentives for Preservation**

While the economic benefits from historic district status are notable, special incentives also exist to help offset any added costs associated with appropriate rehabilitation. Income tax credits are offered at the state and federal levels for rehabilitation which meets certain standards. There are also tax incentives associated with a facade easement on a historic property. In some cases, the city can provide special zoning incentives and can help to expedite development review associated with preservation projects. There are other city housing programs which provide some financial assistance with rehabilitation projects. Additionally, the Utah Heritage Foundation has a low interest loan program for the rehabilitation of historic properties that meet their eligibility criteria.

**Preservation Design Standards & Guidelines**

The design standards in the City Ordinance provide the regulatory foundation for the review of proposals affecting the historic sites and districts in the city. [21A.34.020, See Appendix A] They are brief and provide little detail as to their application in the context of the variety of circumstances that occur when designing a particular project, for a particular house, in a particular district. The design guidelines are non-binding and provide the detailed guidance and advice on ways to meet the ordinance standards. They are necessarily flexible, enabling them to relate to conditions which will arise with the unique nature of each project and property. There may be a clear answer to a design issue, or more often there may be more than one answer which safeguards the integrity of the building and/or district. The design guidelines help to define the most appropriate direction/s and answer/s.
The City has developed and adopted design guidelines for Residential, Historic Apartments and Commercial buildings and sites, and for Signs, to help interpret the historic design standards in the Ordinance, and as an information and guidance resource for the community and the City.

These design guidelines apply to construction work associated with locally-designated historic landmarks sites. They also apply to work within locally-designated historic districts in Salt Lake City, including the rehabilitation of historic structures and landscapes, alterations to “noncontributing” buildings, and to new construction. They apply to single family and multifamily buildings, commercial buildings and parks.

The design guidelines for the treatment of historic properties and for new construction within a historic district are based on nationally accepted principles for preservation and apply to designated historic resources across the city.

At the same time, different settlement patterns and historic resources exist within each of the historic districts, and establish a context and character unique to that neighborhood. Variables defining a distinct context may include topography, street pattern, building age, landscape features, lot size.

Residential guidelines that are tailored to the individual character of each district are included to supplement the information and guidance provided in the city-wide guidelines. Specific residential guidelines are provided for the Avenues, Capitol Hill, South Temple, Central City, University and Westmoreland Place (forthcoming) Historic Districts. Additional residential design guidelines will be developed for each future locally designated district.

The design guidelines for multifamily buildings, commercial resources and signs address more specific types and common issues, and do not have additional guidelines for each historic district.
Why have historic preservation design guidelines?

The design guidelines provide a basis for making informed and consistent decisions about the rehabilitation and treatment of historic resources. They also serve as an informational, educational and planning resource for property owners and their design professionals who seek to make improvements which may affect historic resources.

While the design guidelines are written so that they can be used by the layman to plan improvements, property owners are strongly encouraged to enlist the assistance of qualified design and planning professionals, including architects and preservation consultants.

The purpose of the guidelines, and the review process through which they are administered, is to explain and promote the sound preservation of the historic and architectural heritage of the city. These resources are fragile, and are consequently vulnerable to inappropriate alteration and demolition.

Pressure exists to alter or demolish historic buildings because the close-in neighborhoods where they are found are again regarded as attractive areas to live and work, and widely appreciated for their rich and unique character. These pressures are increasing as the population grows along the Wasatch Front; as residents face longer commutes, an inner-city location becomes a more attractive alternative.

Passage of the state’s Economic Incentives for Historic Preservation Bill in 1993, which provides income tax credits for rehabilitation work exceeding $10,000 for residential properties listed on the National Register of Historic Places, has also brought new residents and investors into Salt Lake City’s historic neighborhoods.

Basic Preservation Theory

The Concept of Historic Significance

What makes a property historically significant?

In general, properties must be at least 50 years old before they can be evaluated for potential historic significance, although exceptions do exist when a more recent property clearly is significant. Historic properties must have qualities that give them significance. A property or a district may be significant for one or more of the following reasons:

- Association with events that contributed to the broad patterns of history, the lives of significant people, or the understanding of Salt Lake City’s prehistory or history.
- Construction and design associated with distinctive characteristics of a building type, period, or construction method.
- An example of an architect or master craftsman or an expression of particularly high artistic values.
- Physical integrity in terms of location, design, setting, materials, workmanship, feeling and association as defined by the National Park Service for the National Register of Historic Places, and
- The age of the site.

The Period of Significance

In most cases, a property is significant because it represents, or is associated with, a particular period in its history. Frequently, this period begins with the construction of a site or building and continues through the peak of its early occupation. Building fabric and features that date from the period of significance typically contribute to the character of the site.
The Concept of Integrity

In addition to being historically significant, a property also must have integrity.

To have integrity a sufficient percentage of the structure or site must date from the period of significance. The majority of the site’s features or the building’s structural system and materials should date from the period of significance, and its character defining features also should remain intact. These may include architectural details, such as dormers and porches, ornamental brackets and moldings and materials, as well as the overall mass and form of the building. It is these elements that allow a building or district to be identified as representing a particular point or period in the history of the city.

See the links below to the basis of preservation theory and principles which are summarized here.

Historic Preservation Principles

The following preservation principles and practice reflect national philosophy and should be applied to all historic properties in Salt Lake City.

Respect the historic design character of the building.

Changing the style of the building or making it look older than it really is should be avoided. Confusing the character by mixing elements of different styles would not respect the historic design character of the building.

Seek uses that are compatible with the historic character of the building.

Building uses that are closely related to the original use are preferred. Every reasonable effort should be made to provide a compatible use that will require minimal alteration to the building and its site. An example of an appropriate adaptive use might be converting a residence into a bed and breakfast establishment. This can often be accomplished without radical external alteration of the original architecture.

Note that the Historic Landmark Commission does not review uses; however, property owners should consider the impacts that some changes in use would have upon their historic properties, since this may affect design considerations that are reviewed by the Commission. In addition, the zoning code provides some incentives associated with certain uses and these may require Commission comment.

These uses may aid in interpreting how the building was used historically. Check the zoning code to determine which uses are allowed.

When a more radical change in use is necessary to preserve and keep the building in active service, then those uses that require the least alteration to significant elements are preferred.
It may be, that in order to adapt your building to the proposed new use, such radical alteration to its significant elements would be required that the entire concept might be inappropriate. Experience has shown, however, that in most cases designs can be developed that respect the historic integrity of the building while also accommodating new uses.

Note that more radical changes in use can make projects more expensive or result in the loss of significant features. Carefully evaluate the cost of alteration, as adaptation for a radical change may prove too costly, or may destroy too many significant features.

**Protect & Maintain Significant Features & Stylistic Elements.**

Distinctive stylistic features or examples of skilled craftsmanship should be treated with sensitivity. The best preservation procedure is to maintain historic features from the outset so that intervention is not required. Protection includes the maintenance of historic material through such simple treatments as rust removal, caulking, limited paint removal and the reapplication of paint.

**Preserve Existing Original Site Features or Original Building Materials & Features.**

Preserve original site features such as grading, rock walls, etc. Avoid removing or altering original materials and features. Preserve original doors, windows, porches and other architectural features.

**Repair Deteriorated Historic Features & Replace Only Those Elements that Cannot be Repaired.**

Upgrade existing materials and elements, using recognized preservation methods whenever possible. If disassembly is necessary for repair or restoration, use methods that minimize damage to original materials and replace the original configuration.

**Selecting a Preservation Approach**

Each preservation project is unique. Consequently, a ‘one size fits all’ set of rules and regulations will only apply in a minority of instances. It may include a variety of treatment techniques, including the repair and replacement of features, and the maintenance of those already in good condition. Some of the basic preservation treatments are described in the section that follows. In each case, it is important to develop an overall strategy for treatment that is based on an analysis of the building and its setting.

This research should begin with an investigation of the history of the property. Research may identify design alterations that have occurred, and may help in developing an understanding of the significance of the building as a whole, as well as its individual components.

This historical research should be followed with an on-site assessment of existing conditions. In this on-site inspection, identify those elements that are original, and those that have been altered. Also determine the condition of individual building components.

Finally, list the requirements for continued use of the property. Is additional space needed? Or should the work focus on preserving and maintaining the existing configuration?

By combining an understanding of the history of the house, its present condition, and the need for actions that will lead into the future, one can then develop a preservation approach. In doing so, consider the definitions of alternative approaches that follow.
Adaptive Use

Converting a building to a new use, one that is different from that which its design reflects, is considered to be “adaptive use.” For example, converting a residential structure to offices is adaptive use. A good adaptive use project retains the historic character of the building while accommodating its new functions.

Maintenance

Some work involves keeping a property in good condition by maintaining or repairing features as or before any deterioration becomes apparent, and using procedures that retain the original character and finish of these feature/s. Regular or preventive maintenance is carried out prior to any noticeable deterioration. No alteration or reconstruction is involved. Such work will avoid having to deal with future repairs and is considered “maintenance.” Residents are strongly encouraged to maintain their properties in good condition to ensure that more aggressive, and consequently more destructive, expensive, measures of rehabilitation, restoration or reconstruction will not be needed.

Preservation

The act or process of applying measures to sustain the existing form, integrity and material of a building or structure, and the existing form and vegetative cover of a site, is defined as “preservation.” It may include initial stabilization work, and minor repair where necessary, as well as ongoing maintenance of the historic building materials and details. Essentially, the property is kept in its current good condition.

Rehabilitation

Rehabilitation is the process of returning a property to a state which makes a contemporary use possible, while still preserving those portions or features of the property which are significant to its historic, architectural and cultural values. Rehabilitation may include the adaptive reuse of the building, and major or minor additions may also occur. Most good preservation projects in Salt Lake City may be considered rehabilitation projects.

Renovation

To renovate means to improve by repair, to revive. In renovation, the usefulness and appearance of the building is enhanced. The basic character and significant details are respected and preserved, but some sympathetic alterations may also occur. Alterations that are made are generally reversible, should future owners wish to restore the building to its original design.

Restoration

To restore, one reproduces the appearance of a building exactly as it looked at a particular moment in time; to reproduce a pure style—either interior or exterior. This process may include the removal of later work or the replacement of missing historic features. A restoration approach is used on missing details or features of an historic building when the features are determined to be particularly significant to the character of the structure, and when the original configuration is accurately documented.
Remodeling

To remake or to make over the design image of a building is to remodel it. The appearance is changed by removing original detail and by adding new features that are out of character with the original. Remodeling is inappropriate for historic buildings in Salt Lake City.

Combining Strategies

Many successful rehabilitation projects that involve historic structures in Salt Lake City may include a combination of preservation, restoration, and other appropriate treatments. For example, a house may be adapted to use as a restaurant, and in the process, missing porch brackets may be replicated in order to restore the original appearance, while existing original dormers may be preserved.

See also Appendix A, Part 2.

The uniform grid of the City of Zion Plan is readily apparent in this early bird’s-eye view.
How to Use the Design Guidelines

Arrangement & Format of the Document and Chapters

The Residential, Multifamily and Commercial Design Guidelines are arranged in four sections. Three sections deal with Rehabilitation, General Issues, New Construction in PART II. Additional design guidelines for each historic district form PART III in Residential, Multifamily and Commercial Design Guidelines. PART IV provides advisory Design Principles & Guidelines for Sustainable Development.

Within the Rehabilitation section the chapters address specific design characteristics of a historic building, and include several topics within one subject and chapter. The chapters are organized in several sections, including introductory and explanatory information on Context and Character, the overall design objective, and the actual design guidelines, often with illustrations. The chapters also include supplementary resources in the form of additional reference material and suggested maintenance tips.

The guidelines are written to identify what is important and why, when considering a project in a historic district or relating to a city landmark site. They are intended to be informative, and to help with the reasoning and evaluation processes associated with both planning and reviewing a project for sensitivity to its context - whether that context is a building or a district.

The Context and Character paragraphs, the Design Objective, and the specific Design Guideline with its application points and illustrations, all form a part of the guideline, and help to determine the most appropriate course of action for a specific circumstance. The process is explained in greater detail below.

Arrangement & Format of Historic District Chapters in the Residential, Multifamily and Commercial Guidelines

These chapters provide additional guidance for individual residential and commercial historic districts and buildings, and have a different format.

Historic Architectural Character

A general description of the district includes a summary of the history of its development, helping to explain the historic form and character unique to that historic district.

Development Trends

Based on the type of previous development in an area, the City has expectations about future trends in development.

The Characteristics of the District

The key characteristics of the district are summarized to inform future design considerations. This summary provides a context within which alterations, and particularly new construction, should be considered. The objective is to support form, scale and design which are sensitive to the immediate context and the district.

Goals for the District

The district design goals establish the long-range view for the character of the district, and provide a foundation for the design guidelines that follow, like the design objectives in other chapters. In cases where the special conditions in a specific project are such that the accompanying detailed design guidelines do not appear to address the situation directly, then this statement of goals should serve as the basis for determining the appropriateness of the proposed work or direction.
The Design Guidelines

The design guidelines are arranged in several sections, which include Streetscape Features, Site and Landscape Design Features, Architectural Features and Appropriateness of Use. Design guidelines are identified in bold within each section, and each guideline may have one or more associated bullet points to clarify the application of the guideline. The guidelines are also numbered to provide specific reference in the review process. The Historic Landmark Commission and City staff should assess whether these guidelines and goals have been adequately met in consideration of a Certificate of Appropriateness for the proposed work.

The Format of a Design Guideline

The design guidelines' format and structure establish a hierarchical framework that provides general and detailed design advice and also design options where the design guideline readily relates to the circumstances of the project, the site or building. Where the relationship is less obvious, on the other hand, and the specific guideline/s do not directly address the individual circumstances of the case, the Design Objective and the Context Character Definition discussion immediately preceding the guideline/s, provide general a direction on the design intent and appropriate solutions.

Each design guideline in the document typically will have five components.

1. Context Character Definition

This component describes the elements of the character of the building and/or its setting or context that are most important to retain, if the integrity of the building or district is to be preserved. This may include technical information, such as factors associated with the preservation of a historic building material, for example, as well as general preservation theory that is relevant to the topic at hand.

The guidelines and their associated context character definitions in each chapter may be divided into pertinent sub-topics. For example, in the chapter addressing Site Features, the topic “Walkways,” is among those discussed. This organization allows the user to select rapidly the specific design topics within a section that are most relevant.

This discussion provides the rationale and foundation for the Design Objective.
A variety of site features are characteristic of early Salt Lake City residential neighborhoods. A house is usually appreciated in its immediate street setting. Individual sites and gardens may share common characteristics which help to define community character.

**Design Objective**

Historic site features that survive should be retained, preserved or repaired when feasible. New site features should be compatible with the historic context and the character of the neighborhood.

**Masonry Retaining Walls**

Sandstone retaining walls were often used in neighborhoods where steep slopes occurred. Many of these walls survive and often are important character-defining features for individual properties and for the districts in which they are found. Some early concrete retaining walls also exist. These should be preserved.

2. Design Objective

Drawing upon existing character and/or the desired condition of the design element/s or context, the design objective is a statement of intent for the treatment of the design feature or characteristic. In cases in which special conditions in a specific project are such that the detailed design guideline/s that follow do not appear to address the situation directly, then the design objective provides a basis and direction for determining the appropriateness of the proposed work.

3. Design Guidelines

The design guideline is typically performance-oriented and describes a desired design treatment. There may be one or more design guidelines for each design topic.

4. Design Guideline Application Points

Additional information about application of the guideline appears in bullet points, and may include expanded explanation of the guideline, suggestions on how to meet the guideline objective, or additional application points to consider.
5. Design Guideline Illustrations
Illustrations clarify the intent of the guideline; captions highlight particular points or examples.

Maintenance Tips
A ‘side bar’ in many chapters provides Maintenance Tips for the homeowner as points or matters to consider in the regular upkeep of a building. Regular maintenance will reinvest in the unique qualities of the property and keep the finishes and details in good repair, while avoiding subsequent, and more expensive, repair or replacement.

Additional Information
A further ‘side bar’ in each chapter provides a brief list of other publications and weblinks as a resource for owners, designers and builders. These references may provide more background on a topic or detailed ‘how to’ instruction.

Some additional information and considerations are provided for Historic Glass and Color, in Ch.3 Windows and Ch.11 General Issues. This information does not form part of the review process for the ordinance design standards, and is provided to supplement an understanding of these matters. This informational text is differentiated in dark red.

Additional Information

Design Guidelines Resources - Information + Maintenance Tips - Example

Chapter 5. Porches

5.4 The open character and integrity of a historic front porch should be retained.

• Enclosing a porch should be avoided.
• Restore a previously enclosed porch to its original open character whenever feasible.

Maintenance Tips for Porches

• Maintain drainage off of the main roof of the house, as well as off of the roof of the porch.
• Channel water away from the foundation of the porch.
• Maintain a good coat of paint on all exposed surfaces.

Additional Information
I
PRESERVATION IN SALT LAKE CITY

Section 4
Historic Context, Architectural Types & Styles
Historic Overview of Apartment and Other Multifamily Buildings

With the period of economic expansion from the 1890s to c.1930 the population of Salt Lake City grew from 44,843 to 140,267, while in the first 10 years of the twentieth century alone, it increased by approximately 120%. Mining, sugar and salt industries, and a major expansion of railroad services with two new depots in the city, spurred industrial growth. Civic improvements included electric streetcar lines, electricity, gas, water, sewer, and telephone services, while sidewalks were paved and many streets ‘boulevarded’ with grass medians.

Urban growth and transformation brought with it increased congestion, rising land values and a significant demand for housing. Multi-story apartment buildings became simultaneously attractive to investors and residents.

“Apartments were clearly an urban house form, and their emergence in Salt Lake City is evidence of the truly urban character the city took on during the early twentieth century.” (Utah State Historical Society, Jan 1989)

An article in the Salt Lake Tribune in 1902 stated:

“It is generally recognized by farseeing investors that the period of cottages in Salt Lake has reached its highest point and the period of flat buildings, marking another stage in the evolution from town to city, has just begun. Most of the available sites for houses within convenient distance of the business center are already occupied, and the constant demand of renters for apartments close in has resulted in stimulating the erection of terraces or flats. There is scarcely a doubt that the popularity of this form of residence will continue to increase; and the wisdom of building for the future has become apparent to more than one investor.” (July 27, 1902, p. 32)

The popularity of this form of residence continued through to the 1930s and beyond. Apartment buildings were primarily constructed in two phases between 1902 and 1931, with over 180 built in the more central areas of Salt Lake City. This is more than eight times the number built in Ogden, Utah’s next largest city.

Apartments did not house the inner city poor. Occupants included members of the middle classes who were either at a transient period of their lives, or as a residential choice for longer-term residents, and including unmarried young adults, widows, childless couples, retired workers and people starting new careers.

“Apartments are remarkably consistent with one another in terms of their building plans, height, roof type, materials, and stylistic features. These and other characteristics mark them as a new and distinct type of early twentieth century residential building.” (Utah State Historical Society, Jan 1987)
From 1902 to 1918 the “walk-up” apartment plan was characteristic, while following the war, the “double-loaded corridor” type of apartment building layout provided the universal model (see discussion below).

Apartment building construction halted in 1931 with the fall of the economy and the onset of the Great Depression. Only two more apartment buildings were constructed after 1931 into the early 1940s. Following World War II, Federal Housing Administration (FHA) policy and increasing access to automobile ownership encouraged the construction and ownership of single-family homes, in more suburban locations, over apartment buildings.

All apartments were constructed as private investments. Many were built as speculative projects, being sold on when completed. Of these developers, W.C.A. Vissing is credited with over 20 major buildings, and was one of the first major builders of apartment buildings in Salt Lake City, using the proceeds from one sale to finance further construction. Long term investors also played a significant role, building, retaining and managing apartment buildings for income. Investors were both individuals and corporations. Of the latter, the Covey Investment Company was a significant builder, constructing over a dozen apartment buildings, many of which were multi-building complexes. Covey continued to invest in apartment construction until 1983.

Urban Apartment Characteristics

The city’s urban apartments are a distinct building type and shared many characteristics. They had multiple stories, usually three or more, and multiple self-contained units, which were accessed from an interior corridor or landing. The number of units varied from six to over 100, with each unit on a single floor (“flats”), in contrast to the multi-story row-house or townhouse type of multifamily development. Most have raised basements providing additional units and common facilities at that level. Virtually all apartment buildings were built of brick, frequently with sandstone foundations and dressings.

The vast majority of the city’s historic apartment buildings can be defined as either a “walk-up” or a “double-loaded corridor” plan arrangement. They generally represent the two chronological periods of early apartment development from 1902 to 1917, and 1920 into the 1930s, respectively, although not exclusively.

The typical basic walk-up apartment building would have six units, two units wide on each floor, arranged either side of a central entrance and stair. Characteristically, each unit would have its front projecting porch or balcony, with framed rear utility porch and secondary stair access. The basic walk-up arrangement was often varied by adding further apartment ranges to create a “U” shaped complex, frequently arranged around a central paved or garden court, which could be varied in width and depth to suit the site. Walk-up apartment buildings exhibited stylistic elements of the architectural vogue, with Neo-Classical, Colonial Revival or sometimes Prairie School composition and detailing.
The few walk-up apartments built after World War I were more complex and more concentrated, often two units deep, and comprising two or more of the basic models, with no front or rear porches. Stylistic expression had also changed, with English Tudor and other period revival styles being popular. Although a few examples of the double-loaded corridor apartment plan were built in the earlier period, they tended to be individual interpretations rather than the later more standardized arrangement. The standard double-loaded apartment plan tended to be narrow fronted and rectangular, and was well suited to filling the deep lots within the Salt Lake City street blocks. A central corridor provided access to units on either side, with each apartment facing the interior and backing onto the sides of the building. The majority had stairways to the front and rear, with some providing side stair access.

The double-loaded corridor apartment plan has been identified as a further adaptation to urban conditions by investors, owners and residents. Many more units could be accommodated using this plan form, with investment, construction and maintenance cost-saving advantages. Porches and balconies became a much more rare amenity and, where featured, were only on front facing apartments. The inward facing dwelling units were a major break from previous residential traditions.

Other forms of multifamily residences built during this period were distinctly different, and by contrast retained the front facing unit, usually with its own external front entrance. These took the form of rowhouses or terraces, double houses, boarding houses, hotels, and apartments above commercial uses.

While the urban apartments are major buildings, with distinctive urban scale and presence, with a common public entrance and hallway, many of the other multifamily building forms are scaled and designed to equate more readily with their single family residential setting. Whereas these smaller multifamily building types were often found as infill development on secondary streets, the urban apartment building always occupied a site on a major street, and often a corner situation. This spectrum jointly contributes to the rich variety of residential scale and forms, creating much of the character across the older neighborhoods of the city.

The following review of apartment and other multifamily buildings in this section summarizes the principal types and styles. It also categorizes apartment and multifamily buildings using the classification developed by Carter and Goss for Utah’s Historic Architecture 1847 - 1940.
PART I Preservation in Salt Lake City

Principal Apartment Types

Walk-up

- brick exterior walls
- flat roof
- front porch bay that extends the full height of the building
- frame, often enclosed, porch at the rear
- high, raised basements, often stone but also concrete
- defined front and back facades

Double-Loaded Corridor

- brick exterior walls
- flat roof
- if balconies exist, they are purely ornamental, very shallow, often with wrought iron railings
- bay windows or French doors on the street facade
- the “front” of the apartment, from the perspective of the tenant, is the corridor, and the exterior side walls form the “back.”

Both types exhibit a variety of styles, most commonly Classical or Colonial Revival. Walk-ups are generally classical.

Other variants exist, but are not as numerous. These include the “U,” the “H,” and the hotel block (similar to the “U” but with a commercial use on the first story). Refer to the typology developed by Carter and Goss for their Utah's Historic Architecture analysis below.

The Kensington Apartments were constructed about 1905, and represent a type of apartment known as a “walk-up.”

A double-loaded corridor apartment building.
Principal Apartment Styles

Classical Revival

- Appearance of a parapet because of an applied, projecting cornice, usually about one foot from the top of the wall
- Round columns on porches
- Large capitals, especially Corinthian, at the top of the porches of walk-ups.
- Quoins
- Pastiche keystones and imposts over doorway arches
- The use of mutules, dentil courses
- Pediments over the porches

Tudor Revival

- Steeply pitched roofs over the entrances
- Multi-pane windows, sometimes diagonal panes
- Crenulation as a cornice detail
- Half-timbering
- Crenulation around the entrance way

Prairie

- Casement windows
- Wide, overhanging eaves
- Heavy lintels to emphasize horizontal orientation
Building Types

The following classifications were developed by Carter and Goss specifically for apartment buildings and hotels in Utah. This categorization system is based on the form of the building and its orientation to the site, and secondarily on the points of entry and the pattern of circulation within the building. Floor plans were not studied in detail. Thirteen major types were identified, most with subtypes, ranging from the double house to the “H” apartment block.

Double House: A

This type was referred to as the “double cottage” in pre-Civil War architectural works and as the “double residence” or “pair of houses” after the Civil War. It consists of two living units under one roof. The building is similar in scale and appearance to a single-family house. The two units usually have separate entries and may be either one or two stories high.
Double House: B

Version B of the double house is a horizontally divided building containing one flat or apartment per floor. Unlike A, type B often has a flat roof and is more urban in character. This type may have either a single common entry for both units or separate entries. Adding a mirror image of the façade of this building—in effect doubling it—creates the four-unit block.

Two-story flat with single entry, 1908, Salt Lake City, Salt Lake County.

Two-story flat with double entries, 1908, Salt Lake City, Salt Lake County. William Asper built this apartment house for bookkeeper K. Brothers and his wife, who occupied one of the flats until the 1930’s.
Double House: C

Type C includes buildings of one, one and a half, or two stories joined together at one end (literally a double house) creating a self-contained unit. This type includes flat-roof examples. More than two such units constitute row housing.

Double house, c. 1905, Salt Lake City, Salt Lake County. This single-story example of the double house has side entries with narrow porches supported by Tuscan columns.

C.I. Anderson double house, 1910, Salt Lake City, Salt Lake County. Built by Edwin Rollins in the Capitol Hill District of Salt Lake City, this building was an investment of C.I. Anderson, who lived next door.
Four-Unit Block

The four-unit block in essence is the mirror-image duplication of the Double House: B type. Entries for the units may be found on either side of the common wall or in a series of doorways. A variation of this pattern is separate first-floor entries and a common entry for the two second-floor units.

Four-unit block, c. 1900, Ogden, Weber County. This example of the four-unit block contains separate entries for each apartment and a unified corbeled brick cornice and parapet.

Four-Unit block, c. 1905, Salt Lake City, Salt Lake County. This elegantly proportioned, four-unit block of brick masonry has brick quoins and cornice with dentils below a short parapet. A portico of paired Tuscan columns protects the double entry to the building.
Row House

A row house consists of three or more single-family housing units of one or two stories joined together. This type is quite rare in Utah.

Alonzo Raleigh row house, 1885, Salt Lake City, Salt Lake County. Built by James Wyatt for Raleigh, Mormon church leader, this building was occupied by several of Raleigh’s descendants into the 1900s.

Silver Row, c. 1890, Provo, Utah County. This brick row house, highlighted by a decorative gable over each entry, was owned and rented out by David Felt, a Provo publisher and printer.
Apartment Block: A

The basic apartment block has two or more stories containing multiple dwelling units. Such buildings may be either horizontal or vertical blocks, depending upon the number of stories and the orientation of the building to the site.

Horizontal blocks may be sited parallel to the street on a wide but not very deep lot. In such cases multiple entries are common in the façade. Such entries lead to foyers with adjacent stairs and—in later, taller buildings—elevators to the upper floors. Off the foyers or stair landings are generally located two or more apartments. Two apartments off each foyer or landing usually indicate a basic plan of two apartments running the depth of the building and separated by a common wall.
Apartment Block: B

Sites with limited street frontage or narrow width but great depth can contain horizontal blocks with a single entry in the façade. Within the building, the apartments are usually arranged in a line on either side of a central hall, an arrangement referred to as a “double-loaded corridor.” Occasionally, on wider sites, two such buildings may be constructed parallel to each other with an open court between them. In such cases they may have either the multiple entries of type A or the single-entry, double-loaded corridor of type B.
Apartment Block: C

Square or nearly square sites usually result in an apartment block of two or more stories with a vertical emphasis. Such buildings frequently have a central entry in the façade.

Rainer Apartments, c. 1900, Salt Lake City, Salt Lake County. The raised basement of this building helps create a sense of verticality characteristic of this apartment type.

Norma Deane Apartments, 1917, Salt Lake City, Salt Lake County. One of three identical buildings on the same site built for the State Loan and Trust by C. C. Severs, this block exhibits the wide overhanging eave and geometrical woodwork common to the Prairie School Style.
“L” and “T” Apartment Blocks

The “L” block has two or more stories of multiple dwelling units arranged in an “L” configuration. The building may be built close to the street corner with two sides facing the streets, or the configuration may be reversed so that the building is set back on the site and preceded by a forecourt.

The “T” block is similar in construction; most frequently, the cross-piece of the “T” is placed adjacent to the street. This form is commonly placed on lots in the middle of the block.
“C” Apartment Block

This type is not to be confused with the “U” court. The two side wings projecting from the back of the “C” are usually not deep, and the open space confined within the shape is too shallow or too small to be considered a real court. Entry into this type may occur at the ends of the wings, or the building may have multiple entries at the back of the “C.”

Rose Apartments, 1923-24, Ogden, Weber County. This is a brick masonry “C”-shaped apartment building containing entries in the wings.
“U” Court

In the “U”-court form, the court is usually oriented toward the street. Such configurations may have either a single entry point at the base of the “U” behind the court or multiple entries, often one entry facing the court in each wing and one in the base. As in the perpendicular Apartment Block: B, a single entry leads to a foyer, stairs and/or elevator and to a double-loaded corridor. In the case of multiple entries, two or more apartments are located on each floor. Examples of the “U” court may be one or more stories in height. A less common variation is the reverse “U” court, with the court oriented away from the street.
Hotel Court

A variant of the “U” court is the hotel court. In this type, the first floor is reserved for commercial functions and the central court is open above that level. Laterally extended versions of this type containing a second court also can be found, as in the “E” or double court. The “E” court was a popular design for large hotels in urban areas.

The Shubrick, 1912, Salt Lake City, Salt Lake County. Based on the hotel court type, this building was constructed for the Blanche and Archibald Rikert, out-of-town investors. (The Shubrick was demolished, c. 2010)

Peery Hotel, c. 1910, Charles Onderdonck, architect, Salt Lake City, Salt Lake County. This example of the “E” or Double Court was built for Ogden Businessmen David and Joseph Peery.
“H” Apartment Block

What appears at first glance to be a “U” court may turn out to be an “H” apartment block with a second court at the rear. Such designs provide improved light and ventilation to all units.

Bell Wines Apartments, 1927, Slack Winburn, architect, Salt Lake City, Salt Lake County. This “H”-type apartment block is preceded by an unusually shallow forecourt. A tall portico supported by square columns spans the width of the court. The wings of the building are emphasized by stone quoins and a molded cornice.

Mayflower Apartments, 1927, Slack Winburn, architect, Salt Lake City, Salt Lake County. A vertical “H” apartment block complete with attached parking structure, the Mayflower was built by and for the Bowers Building Company.

Additional Information


http://heritage.utah.gov/history/historic-architecture-guide
http://utahhistory.sdlhost.com/#/item/000000011019963/view/195
II
Design Guidelines
for
Rehabilitation,
General Issues
&
New Construction
PART II  Design Guidelines

REHABILITATION, GENERAL ISSUES & NEW CONSTRUCTION

CHAPTER 1  SITE FEATURES & STREETSCAPE  1:1 - 2
CHAPTER 2  BUILDING MATERIALS & FINISHES  2:1 - 4
CHAPTER 3  WINDOWS  3:1 - 2
CHAPTER 4  DOORS & ENTRIES  4:1 - 2
CHAPTER 5  PORCHES & BALCONIES  5:1 - 2
CHAPTER 6  BUILDING FORM, FACADE DESIGN, ARCHITECTURAL ELEMENTS & DETAILS  6:1 - 2
CHAPTER 7  ROOF FORMS & PARAPETS  7:1 - 2
CHAPTER 8  ADDITIONS  8:1 - 2
CHAPTER 9  ACCESSORY STRUCTURES (GARAGES, CARPORTS, ANCILLARY STRUCTURES)  9:1
CHAPTER 10  SEISMIC RETROFITTING  10:1 - 2
CHAPTER 11  GENERAL ISSUES  11:1 - 2
CHAPTER 12  NEW CONSTRUCTION  12:1 - 64

The following chapters supplement, and should be read in conjunction with, the equivalent chapters in A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, where each topic area is defined in greater detail.

Salt Lake City
Chapter 1
SITE FEATURES & STREETSCAPE

Building & Setting
The scale and configuration of an apartment or other multifamily building, and their role in defining the historic character of the immediate setting, or the district, is likely to be greater than any single family neighboring buildings. Smaller multifamily buildings might be an exception.

Closer to downtown, the role of site features as a streetscape characteristic is likely to be diminished due to reduced building setbacks. Nevertheless, the significance of such site features is likely to vary. They should be evaluated primarily in the context of the individual building, informed by historic research where possible, and secondarily in the context of the street as a whole. The individuality of the building is likely to be the paramount consideration, and where evident, historic site features will have been designed to complement and accentuate the role and impact of the primary building. The apartment or multifamily building may have fewer site features, it may have more site features, or it may be merely ‘out of step’ with its context.

Streetscape Continuity & Coherence
An apartment building may consequently play a reduced role in creation & definition of the visual continuity and coherence of the street scene and street façade. This might contrast with the cohesive variety which is often an attractive characteristic of a single family residential setting.

There are also many instances where the scale of the apartment building, or a sequence of apartment buildings, is such that it/they completely redefine the character of the street or street block. An evaluation of the role and importance of the historic site features will depend upon identifying the primacy of the building/s or the streetscape.

1.1 Historic site features should be evaluated primarily in relation to the building and secondarily in relation to the street and district.

Building Approach & Setting
With a historic apartment or multifamily building, the design of the site, and its role in the setting and the often more formally designed approach to the building, are likely to be character-defining features. Symmetry is a common characteristic of the design of a historic apartment building, and consequently of the site and landscape design. A central, paved, public approach to a prominent stoop, elevated entrance and doorway, may be the most common characteristic. The site design usually compliments the symmetry of the building design. This relationship should be retained where it is identified as a historic arrangement. Where possible, it should be reinstated if it has been lost or compromised in the past.

1.2 A historic site and landscape arrangement and building approach should be retained wherever possible.

1.3 Where it has been lost, it should be reinstated when the opportunity arises.
Public Role & Status
The role and status of the historic site design, the approach to the apartment building and the site features will tend to be more obvious and more public than would be the case for a single family residence. The contribution of the site design to the civic character of the street will be consequently more significant. Part of this character is usually an open landscape design and arrangement. Walls or fences are less common and play a more minor role, unless warranted by the topography of the site or context. Where such a characteristic is currently evident, it should be retained; and if lost, ideally should be reinstated.

1.4 The open character of a historic landscape design should be retained.

- Avoid enclosing with a fence or wall if this was not a part of the historic design.

Parking Area
In many early apartment or multifamily buildings, characteristically in closer proximity to downtown or where served by a historic streetcar line, provision for a distinct parking area is less common. As the twentieth century progressed, access to private transport became more widespread, and a distinct parking area, often with a specific garage arrangement, became a significant feature of an apartment building and its site layout.

Usually this was placed to the rear of the building, and sometimes to the side, with corner side access being a popular arrangement. It might often be designed with a specific storage facility. A wider driveway may have been characteristic, but tended to be relatively insignificant in the context of the scale of the building and its site.

A later post war arrangement, with greater emphasis on vehicular site access, sometimes with a centrally placed drive or garage access, is also found.

1.5 Parking areas should continue to be placed at the rear of the building and the historic drive width maintained.

Garage Buildings or other Accessory Structures
Garage and other accessory structures, in some cases considered important historic site features, are reviewed in Chapter 9 below.

Site Lighting
The scale of many early apartment buildings is such that they may have their own site lighting arrangements, sometimes integrated with the street lighting.

A focus on the primary entrance to the building provided by original light fittings is a common characteristic, sometimes with supplementary light standards detached from the building. Original or early lighting arrangements will usually be an obvious character-defining feature of the building or the site, and as such should be retained. Ideally, where they have been damaged or lost, their repair or reinstatement is strongly encouraged.

1.6 Historic lighting arrangements and their fittings should be retained.

1.7 They should be reinstated or repaired wherever possible when the opportunity arises if previously lost or damaged.

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.1 - Site Features
Chapter 2
BUILDING MATERIALS & FINISHES

Characteristic Materials

Traditional masonry construction is characteristic of the majority of historic apartment and multifamily buildings. Brick and stone, with occasional concrete and stucco, provide both the medium of construction and the medium of expression of architectural style, façade composition and detail. Individually, and in context, the creative visual expression of the city’s historic apartment buildings are arguably the single most important element in creating and defining the sense of place associated with Salt Lake City’s older neighborhoods and inner urban areas. Their rich palette of traditional materials is the essential foundation of this expression.

Brick is the primary building material for the majority of historic apartment and multifamily buildings. This is usually combined with natural stone for parapets, gables, entrances, foundations, window sills and lintels, belt courses and other embellishments in the architectural composition. Concrete increasingly became an alternative to stone for particular elements and details as the twentieth century progressed. This palette provides a resilient construction medium which has inherently durable and energy management advantages in the extremes of the Utah climate.

Although requiring less regular maintenance, masonry is still vulnerable to deferred maintenance, which can expose the exterior of the building to water ingress and consequently also frost damage. The integrity of guttering and other water management elements, and the pointing of the masonry become important in maintaining the appearance, efficiency and longevity of a facade.

Painting the masonry should be avoided. Painting alters the architectural character, seals in moisture causing gradual damage to the walls and their thermal performance, and also builds in the recurring cost of periodic repainting. Where painting has been carried out in the past, and investment is available to strip the paint without damaging the masonry surface, the removal of paint is encouraged. It must be carried out with great care, however, to avoid permanent damage to the brickwork.

Wood was used for rear utility porches and screens, and for balcony construction and detailing, as well as window framing and doorways. While requiring periodic maintenance in terms of ensuring a sound paint surface, especially where exposed as decorative balcony construction and detailing, original or early wood will also be a very durable material. This close-grained, well seasoned old growth wood should be retained and repaired wherever possible. Its durability will significantly outperform any more recently harvested wood considered for replacement.

Iron and steel, and occasionally other metals, also play a role externally in various forms of decorative railing, balcony construction and fire escapes, and often as window framing. Again, although durable, periodic maintenance will be required to ensure a sound coat of paint. A more vulnerable relationship arises where a ferrous metal is set directly into stone or concrete, creating the potential for gradual rusting and expansion of the metal, and resultant fracturing or spalling of the masonry. Original metalwork should be retained wherever possible and repaired or reinstated if necessary. Systematic maintenance should ensure that it is unlikely to become a cause of deterioration of the building.
Architectural Character

The palette of materials, their relationships, detailing and textures provide the basis of the design expression of the architectural composition. With a historic apartment building this is usually manifest in a symmetrical, sometimes asymmetrical, front façade. Although housing several residential units the architectural integrity of the apartment building will depend upon adopting a comprehensive approach to the entire façade. Treating building materials differently for one residential unit and not others will compromise the coherence of the design composition, and adversely affect the historic integrity of the building.

2.1 Proposals for repair or alteration should be considered in the light of adopting a common and comprehensive approach to the design of the facade.

Principal Doorway

As a rule the main entrance of a historic apartment building is designed as a key focal point of the primary façade, and embellished with attention to proportions, the palette of materials, their relationships and their detailing. The contribution of the principal doorway will be a significant character-defining feature of a historic apartment building. It should be retained, or ideally repaired or reinstated if previously damaged, adversely altered or removed.

Balconies

Balconies are a principal characteristic of virtually all early ‘walk up’ type apartment buildings and many ‘double-loaded corridor’ type apartments. They often create much of the street facing architectural character of the building and its stylistic identity.

Balconies are however a highly exposed element of the exterior façade. The materials and detailing therefore will require more frequent maintenance, and will consequently suffer more rapidly from deferred maintenance. A common approach to maintenance, repair or alteration will be required to ensure the integrity of the visual cohesion of the facade. Similarly, if replacement of any of the materials is unavoidable, they should be replaced to match the original wherever possible.

Classical orders of supporting columns and their details can be vulnerable to exposure, lack of maintenance or repairs, and should receive periodic attention.

Roofline & Cornice Line

The roof materials are likely to be an element in the apparent character of particular architectural styles such as Tudor, Gothic and perhaps Spanish influences. A more complex roof form and steeper roof pitch will expose the roof treatment and materials. Similarly, materials characteristic of the style should be retained or if necessary replaced in kind. Care should be taken to ensure that a common approach is taken to the roofing materials which are a visible characteristic.

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.2 Building Materials & Finishes
See also: A building with a flat or low pitched roof form set behind a parapet is less likely to be a feature of concern to the apparent character of the building. The parapet wall itself will be exposed to the elements of weather on both sides. A sound series of flashings, and coping or cap ‘stone’, as well as attention to repointing the masonry, will be essential to ensuring the weathertight performance, and the appearance of the building.

Cornice and eaves lines may be an important element in the design of the building and may be constructed from a range of materials, from masonry to wood and metal. Here, exposure and vulnerability, coupled with issues of access, prompt additional care to ensure they are maintained, and consequently retained.

2.2 Original materials, their details and finishes, should be retained and where necessary repaired.

2.3 If the element is beyond repair, then limited replacement in matching materials, detail and texture or finish should be accomplished, to ensure the visual integrity of the original composition.

Utility Porches, Screens and Rear Escapes

As an original part of many early apartment buildings, the utility porch should be retained and repaired. Although characteristically of wood, this section of the building was likely to be initially well constructed, and if adequately maintained, should endure the life of the building. The quality of the original wood is likely to be high and will perform well if paintwork is sound. Usually situated to the rear of the building, and visible along the side facades from the street frontage, often this section of the building can suffer from inadequate maintenance and premature deterioration. The utility porch is also an area where there is major scope for creating more usable space within the building through additional insulation and enhanced energy efficiency.

2.4 As an original part of many early apartment buildings, the utility porch should be retained and repaired.

Maintenance and Repair

The materials of an early apartment building will perform as they should if they are understood and maintained. Identifying and avoiding sources of water are fundamental to both the appearance and the survival of the building and its materials. Managing rainwater goods to avoid leaks and channeling water away from the building, avoiding associated freeze-thaw deterioration and damage from leached salts, maintaining sound pointing which is not harder than the brick or stonework, caulking and maintaining a sound paint finish, ensuring sound flashings where they occur, and carrying out minor repairs as required, should ensure the integrity of the original range of materials and their continued performance and role in the expression of the architectural character of the building.
PART II  Design Guidelines

MATERIALS
Chapter 3  
WINDOWS

Fenestration Pattern and Façade Composition

The fenestration pattern (the pattern of windows and doors) is perhaps the key element of the architectural composition of the primary, and frequently, the secondary facades of a historic apartment building.

The relationship of the windows and doors provides an essential design framework, at the same time as it reflects various aspects of the use and relative importance of the internal arrangement of the building and residential units. While representing a number of individual residential units, the fenestration pattern is arranged to create the symmetry or asymmetry of the design of the principal façade/s. A coherent approach to maintenance, repair, materials, alterations, or replacement, and indeed color scheme, is therefore critical to maintaining the character of the building.

The design and the subdivision of an individual window itself will be similarly important to the architectural character of the building, providing much of the embellishment and design detail inherent in the fenestration pattern. In the street facing façade in particular, it is often used to impressive design effect, and helps to reinforce a rich architectural contribution to the street.

Again, consistency in maintaining the common patterns of proportion, subdivision, detailing, hierarchy, profiles, materials, finishes and colors will ensure that the original design of the façade continues to contribute as was intended when the building was designed. This would also be the case for raised basement windows which normally form part of this composition.

There will often be a distinct contrast between the front and the side and rear facades, with the architectural identity of the building being principally invested in the street facing façade. The height and scale of the building, however, will ensure that the side and often the rear facades will be readily visible in terms of their contribution to the character of the setting and district.

In a plainer secondary façade, the fenestration becomes often more important in creating the rhythm and definition of an otherwise unrelieved masonry wall. Again consistency in maintaining the common relationships between the window proportions, design/s and materials is essential, avoiding sporadic treatment or alteration which might destroy the coherence of this relationship.

Maintenance and potential repair will be affected by the degrees of exposure of, for example, the south and the west facing facades, and also the enhanced exposure of the higher windows. Wind, rain, snow, ice and solar ultra-violet light will all play a role. Anticipating these characteristics will ensure an effective inspection and maintenance program, and enhance the historic architectural character and attraction of the building.

3.1 Maintenance, repairs and alterations should be planned and designed to retain the coherence of the fenestration pattern, and the relationship between the proportion and design of all the windows.

3.2 Haphazard or sporadic alteration should be avoided unless the work will match the existing patterns, proportions, profiles, details and materials.

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.3 Windows
Primary Entrance and Entrances

In many cases, there will be one primary entrance and doorway, often placed symmetrically on the street facing façade. The scale, proportions and design emphasis placed on this entrance ensures it as a key character-defining feature of the building, and also the façade sequence in the street. The entrance may be at grade, but usually provides direct access to a raised first floor above an elevated basement level. Consequently, it is more often elevated above street level, gaining prominence and visual emphasis from its scale and stature, often accentuated by decorative steps, railings, lighting and canopy.

A larger historic apartment complex though may have several entrances, characteristically with each providing access to a separate wing or section of the building. Each entrance will have its own role as a focal point in the composition of each façade. In such a case, the original design and also the relationship between the entrances, both become important characteristics which should be retained.

4.1 The original proportions, design, solid-to-void relationship, detailing, materials and finishes of a historic entrance should be retained, and/or repaired to match if required.

- Reinstatement of the original design is encouraged if this has been compromised in the past.

4.2 The design relationships between several key entrances to a larger apartment complex should be retained.

Balcony Doors

With an early apartment building, doors providing access to balcony space are an important part of the fenestration pattern.

4.3 The original design, finishes and detailing of balcony doors should be retained, as should the common design relationship between this pattern of doors.

Secondary or Service Doors

Service doors may be a feature of the primary façade/s or more likely the side and the rear facades.

4.4 Secondary and service doors should be maintained and retained where they are original to the building.

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.4 Doors
PART II     Design Guidelines

DOORWAYS
Chapter 5
PORCHES & BALCONIES

Front Porch
A front porch, usually shared, sometimes individual and distinct, is a feature of many early and usually smaller multifamily buildings. It usually transforms into a balcony arrangement in a larger apartment building.

5.1 The original design, materials and detailing of a front porch should be retained and repairs made or materials chosen to match.

5.2 Where similar but discrete individual porches are a historic feature of the building, alteration or repair should ensure that the original character, appearance and relationship is retained.

Rear Porch
A rear porch structure, sometimes initially designed as a sleeping porch, may be a feature of a historic multifamily building.

5.3 As a historic feature of the building, a rear porch should be retained wherever possible.

Balconies
Balconies may be the most obvious feature of the primary street façade or they may be designed as an individual addition to a window and door opening. Early ‘walk up’ apartment buildings are likely to have a notable balcony arrangement, usually designed as a principal characteristic of the style and facade composition of the building.

Classical architectural detailing was frequently engaged to either create a full height ‘giant order’ portico and often pediment, or as a Classical hierarchy of column design at each level. The strong symmetry of many facades is often achieved or accentuated by the balcony arrangement, framing a central entrance.

The exterior balcony arrangement was less frequently a feature of the subsequent ‘double-loaded corridor’ apartment plan, although they are occasionally a feature of the side facades of some of these buildings. Later and often smaller buildings might feature individual shallow iron balconies as a discrete structural addition to each window bay.

5.4 As a key, character-defining feature, an original balcony design and arrangement should not be altered or enclosed.

5.5 As a key, character-defining feature, an original balcony design and arrangement should not be altered or enclosed.

- Consider the reinstatement of a historic balcony arrangement and design, where this has been previously lost or altered.

5.5 A building maintenance and repair program will usually require a more frequent balcony maintenance cycle, occasioned by the degree of exposure of a balcony arrangement.

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.5 Porches
Chapter 6
BUILDING FORM, FACADE DESIGN, ARCHITECTURAL ELEMENTS & DETAILS

The design focus here is not just the architectural elements and details, but essentially encompasses the architectural composition in its entirety. The building form and architectural character of a historic apartment or multi-family building derives from several distinctive building types, and a range of architectural styles or stylistic references. The design depends upon a hierarchy of related architectural forms, elements, details, materials, textures and finishes, which are composed to create the character of the primary and secondary facades, and consequently the design theme for the building.

The city’s historic apartment buildings cover the spectrum of architectural styles, spanning the various expressions of Classical through other period revivals including Cottage, Tudor and Gothic, and into Arts and Crafts and Prairie inspired design themes. Many combine stylistic references in elements and details which attract the more apt definition of “eclectic.”

The complete design composition of the building facade/s is of much greater importance than the individual residential units, or effectively much greater than the sum of its individual parts. The scale of the building is usually notably larger than its neighboring single family houses, and therefore the impact upon the character of the setting, is that much greater. Consequently, original elements, features, details and materials, which are employed to create this composition, should be retained wherever possible, and repaired as required.

If replacement is the only option, then such replacement should be in kind, matching materials and detailing to ensure that the integrity of the composition and the architectural character are retained.

As the twentieth century progressed, the design expression became plainer and usually the details less elaborate, less obvious, and more subtle. Frequently the choice of material/s, or for example the textures and tones of the brickwork, might be where this visual character and design exuberance are concentrated. The same principles apply however in evaluating options for repair or alteration, with a focus on retaining as much of the original integrity and character as possible.

6.1 The repair or sensitive alteration of a historic apartment or multifamily building should ensure that work is planned and designed to reflect the character of the original design, both in terms of its components, and especially in respect of the design composition as a whole.

- Evaluate and respect the original design.
- Treat all similar components in a similar way.
- Match original details, materials and finishes.

See also: A Residential Handbook for Historic Properties & Districts in Salt Lake City, Ch.6 Architectural Details
Chapter 7
ROOF FORMS & PARAPETS

The roof forms of specific styles of historic apartment building, such as the steeper roof pitch associated with for example Tudor, Gothic or perhaps Spanish influences, will be characteristics which are important to the historic integrity of the building, and which will be readily appreciated from the street. Similarly, the location, form and detail of dormer windows should respect the original building design.

Many apartments however have either a flat or low pitched roofline set behind a parapet wall. Here the roofing materials will not be apparent and not an obvious feature of the historic integrity of the building.

At the same time, the parapet itself is often designed as a decorative, as well as a functional feature, to terminate and frame the design of the primary facade.

7.1 Repairs to a roof profile and to a parapet should match the original to the greatest extent possible.

7.2 Improvements should be undertaken in the spirit of the original design, retaining or indeed reinstating elements of the original.

A parapet-screened lower roof profile provides an opportunity and situation for the addition of solar power generating hardware, with zero or minimal effect upon the profile of the building. (See Sustainability Design Guidelines, PART IV)

See also: A Residential Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.7 Roofs
ROOF FORMS & PARAPETS
Chapter 8
ADDITIONS

Utility Porch and Other Early Additions

Many early apartment buildings feature an original utility porch and open or enclosed escape stair. As an original element of the building, these should be retained, repaired and where appropriate upgraded to improve insulation and energy efficiency. Although placed to the rear of the building, they are likely to be a notable feature as appreciated along the sides of the building and, in terms of the building scale, frequently also from the rear.

New Additions

In considering the design of a new addition to a historic apartment building, the evaluation of design options should focus upon the historic character of the building. Providing additional space by extending the original utility porch may create an opportunity to retain original character, yet compliment this with a compatible contemporary design. The original building form, proportions and visual emphasis should be considered, as should the original palette of materials and their detailing.

In most cases, proposing a new addition on top of the original building will adversely affect its original character and the integrity of the building. Locating a new addition to the rear however might readily be achieved if the form and design can be composed to respect, reflect and also compliment the character of the building. An addition to the rear should not compete with the architectural importance of the original building. A rear addition should not exceed the height of the original building and might valuably be set back slightly from the plane of the original facades.

See also: A Residential Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.8 Additions

Rehabilitation Design Guidelines
Chapter 9
ACCESSORY STRUCTURES
(GARAGES, CARPORTS, ANCILLARY STRUCTURES)

Garage or other accessory structures built in conjunction with a historic apartment building, where they retain all or much of their integrity, are likely to be a character-defining feature of the site design, as well as part of the historic narrative of the principal building, the context and the evolution of the neighborhood. Occasionally, they may date from the previous use or development of the site, and are a rare survival of the historic sequence of the site and this context in the city. A garage may also be a later addition to the site, and yet complement the character of the site and context. The contribution will depend upon a number of factors, including the historical development sequence, historic architectural integrity and degree of alteration, and compatibility with the architectural character of the principal building.

Where accessed from an adjacent street on a corner site, they are also going to be appreciated directly from the street. Their form and scale will often make a notable visual contribution to the character of the building, the site and/or the historic context.

A characteristic challenge is likely to be adaptation of an early garage structure to current vehicular and storage requirements, while retaining essential character-defining layout and elements of its original construction.

9.1 Consider retaining an early garage or other accessory structure identified as a character-defining feature of the site.

9.2 A proposal to replace a garage or accessory structure should consider the placement of the original in the new design and layout.

See also: A Residential Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.9 Accessory Structures

Chapter 10
SEISMIC RETROFITTING

Specific advices on building reinforcement best practices are available to inform considerations of seismic retrofitting for multifamily buildings of a particular construction.

See also: A Residential Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.10 Seismic Retrofitting
Chapter 11
GENERAL ISSUES

Access

Many historic apartment buildings have an elevated principal entrance accessed several feet above street level via a series of steps. Improving universal access arrangements may require review of alternative entrance arrangements. Alterations should accommodate improved access arrangements to the greatest extent possible. Code requirements provide for an exception where access proposals would adversely affect important character-defining features.

Service & Parking Areas

In the majority of instances, the parking and services areas for a historic apartment or multifamily building will be situated to the rear. Trash arrangements tend to be associated with rear storage facilities, utility porch or egress structures, or retained within the building. Alterations should continue such an arrangement, consolidating and coordinating trash facilities, and screening these adequately where this is not already the case. This is of particular importance where the service and parking area is readily visible from an adjacent street, in the case for example of a corner site. In the latter case, consideration should be given to additional screening from street views.

Mechanical Equipment

Air conditioning arrangements for a historic apartment or multifamily building should be coordinated to avoid the sporadic addition of individual units in individual windows, or on balconies. External air conditioning equipment should be situated to the rear of the building or on the roof, and be screened in both cases. Roof mounted equipment should always be screened where it would exceed the height of the parapet walls, and it should be situated back from the facades of the building to reduce visual impact.

Screening should be designed to reduce both visual impact and to avoid acoustic impact. Associated piping and service lines should be run internally, or should be situated externally where they would not be visible on the facade/s in views from the street. A maintenance and repair program should ensure that all operable windows are in good working condition to take advantage of the passive internal climate management provided by natural ventilation. (See Sustainable Development Design Guidelines, PART IV)

Roof and Wall Vents

All exhaust or breathing vents should be situated at roof level and should avoid any visual impact upon the primary and secondary facades or roofscape of the building.

Where facade location is unavoidable, they should be located on a secondary facade, and be coordinated and designed to integrate sensitively with the original design, materials and toning of the building.
Communications Dishes and Antennae

Such equipment should, to the greatest extent possible, be situated where it will not have a visual impact upon the site, the building or its roof profile.

Solar Arrays

Solar power equipment should be chosen and situated so that it will avoid visual impact upon the primary building as it is perceived from the street. As solar technology continues to evolve, the efficiency of solar energy conversion using photovoltaic cells provides a greater degree of flexibility in designing an effective and sensitive solar facility. Solar panels, solar shingles and solar laminates increasingly provide a spectrum of choice which in most cases should provide the flexibility to achieve effective solar power generation without adverse impact upon the historic architectural character of the building. (See Sustainable Development Design Guidelines, PART IV)

Landscaping

Original or early landscaping and trees are a significant part of the historic maturity of the site, the building and the context, and should be retained wherever possible. This should help to ensure that this character is not adversely affected, and that the environmental advantages of a mature landscape setting are not compromised. (see Sustainable Development Design Guidelines, PART IV)

Fire Escapes & External Stairs

Fire escape stairs or alternative escape arrangements should be situated to the rear of the building. Wherever feasible, these escape arrangements and structures should be placed inside the building. Avoid proposals which would alter the character of the key design features such as balconies and principal entrances.

Color

Refer to advisory section in the Residential Handbook and Design Guidelines. Color is not a matter considered in historic design review in Salt Lake City.

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.11 General Issues
II
Chapter 12

Design Guidelines
for
New Construction
INTRODUCTION

The majority of buildings in the historic residential neighborhoods in Salt Lake City are single-family residences. Closer to downtown, the university and on major streets, however, there are many significant early apartment buildings, as well as a wider distribution of smaller scale multi-family buildings. The type, style, scale and siting of these buildings combine to create a significant element in the unique character of downtown and the older neighborhoods of Salt Lake City. Many apartment buildings are principal architectural elements in the city’s designated historic districts. Many are also individually listed as national landmark buildings, both within and outside the designated districts.

The planning and design of a new apartment or other multifamily building should respect and reflect the street network and architectural patterns which help to establish the character of the city’s older neighborhoods and its downtown area. A new multi-family building should also contribute sensitively to the immediate setting of any of the city’s landmarks.

Salt Lake City is associated with a unique urban character, distinguishing this “crossroads of the west” from other cities in the region, and indeed the country. A distinct sense of place for the city as a whole derives in major part from an incomparable inter-mountain setting adjacent to the Wasatch Range, Oquirrh Mountains and the Great Salt Lake. Within Salt Lake City, architectural and cultural traditions from the United States and from Europe have combined to create a downtown area and residential neighborhoods of distinctive quality and character.
As the city developed into the foothills to the north and east, the natural topography molded this urban character in the various ways that the settlement patterns, building design and construction tackled the challenges of sloping terrain and more difficult sites. Buildings and site grading accentuate the drama of architecture through terracing and modulation, creating stepping vertical tiers of projecting balconies and varied vistas and views.

Salt Lake City is a varied and eclectic city, with many highly regarded neighborhoods, districts, boulevards and vistas which represent several periods in its history in a variety of configurations and styles. While residential fabric is diverse in type, style and scale, it has in many instances been designed with an architectural eye for the creation of a coherent urban neighborhood character.

These buildings, including the many early apartment buildings, are creatively designed and robustly constructed, employing traditional building craft skills and durable materials. There is an inherent understanding of and an eye for stylistic and decorative architectural composition and detail. Apartment buildings contribute to the city’s distinctive identity and livability, while they are also sought for their attraction as a place of residence and also investment.

The Purpose of the New Construction Design Guidelines

Designing a new multifamily building to fit in with and enhance Salt Lake City’s existing urban fabric is a complex challenge. The character of most districts and settings is likely to be clearly defined, while each site and its immediate context will be unique. Planning a compatible infill building requires both a depth of understanding from the developer and a creative skill and sensitivity on the part of the architect.

These design guidelines for new construction set out considerations that should inform the planning and design process from the earliest stage, as well as the design review evaluation and approval of an application. They are not exhaustive, nor can they anticipate every issue that might arise in what will always be a unique set of circumstances for each site and context. The guidelines are however crafted to be sufficiently flexible to provide advisory direction across a range of design considerations, seeking to address the context of the particular issues or constraints of an individual site and situation.

They set out the agenda for more informed discussion and evaluation, with the objective of helping to ensure that future apartment and multi-family buildings are designed to acknowledge and contribute to the creative evolution of the architectural character and unique spirit of place associated with the city’s older neighborhoods.

The New Construction Guidelines identify a range of design criteria which address the planning and design of the site, and the character and form of the building. They provide directions and advice on ways to address the design standards in the City ordinance. Since in their coverage the guidelines anticipate a spectrum of circumstance and context, a proportion of these design criteria may not be directly pertinent to the individual parameters of a particular project.

The design guidelines for new construction are not prescriptive. They seek to build in a flexibility in design evaluation, recognizing that there will be alternative ways of approaching a design which may be compatible with historic character and context. At the same time, they encourage creative design and do not pre-empt a design approach which achieves similar objectives in an innovative and imaginative manner.
THE DESIGN APPROACH

Context - The Public & Private Realms
Designing a building to fit within a historic district requires careful thought. A historic district conveys a sense of time and place associated with its history and development. At the same time, it remains dynamic, with alterations and additions to existing structures, and with the incremental construction of new buildings.

Historic apartment buildings and smaller multi-family structures are key character-defining elements in the city’s more historic neighborhoods. Individually, they contribute to their setting and also to many city streets approaching and within the Downtown area. From time to time, the opportunity to construct a new apartment or multifamily building arises. The site and context will prompt the need to consider good infill design principles which are then honed to the individual circumstances of the project, site and setting.

Designating a historic district recognizes the irreplaceable character of the area and should ensure that a new building will be designed in a manner that both recognizes and reinforces the unique and essential visual and historical characteristics of the neighborhood. A new building should relate to the character of the district and setting, yet complement that character with compatible and creative new design. In these respects, successful and creative infill design relies upon reading and understanding the patterns underlying the character of each district, and each setting. It also relies on an understanding of the role of time in creating, and incrementally transforming, these urban patterns. Such characteristics would include:

- the way in which a building is located on its site,
- the manner in which it relates to the street, and
- its scale, height, massing, form, details and materials.

Although a number of the city’s more historic apartment buildings may exceed the height and scale of their immediate context, they tend to be designed with a respect for smaller structures in the vicinity. They often do so by employing a range of modulation, patterns, architectural elements and materials which together help to reduce the scale of a larger building and enhance a sense of compatibility.

These essential design relationships form the basis on which new projects should be conceived, and they should be reinforced by details and considerations of architectural type and style. A new building can readily be compatible with the historic context in a creative contemporary expression of the principles of good infill design. These design guidelines promote and encourage compatible creative design that can relate to the patterns and characteristics of the historic setting and district.
DESIGN GOALS FOR NEW CONSTRUCTION

The design guidelines for a new multifamily building consequently have several specific goals:

- To ensure that a new building fits into the established historic context in ways that respect and contribute to the evolution of Salt Lake City’s architectural and cultural traditions.

- To introduce a new building in ways that preserve, and where appropriate, enhance and reinforce the public realm, and to ensure that the city’s urban walkable street pattern is framed by buildings that engage with and activate the street.

- To encourage sensitive and creative design which draws inspiration from both an understanding of the best of the city’s apartment and multifamily architectural traditions, and also the particular historic neighborhood context.

- To encourage the design of multifamily buildings constructed with durable materials, assembled in ways that recognize established historic character and generate long term value in contributing to this individual character.

- To include both passive and active sustainable building development strategies and design that maximizes energy efficiency, water and resource conservation, and enhances outdoor and indoor air quality. (See PART IV)
Chapter 12. New Construction in Historic Districts

SUMMARY OF DESIGN GUIDELINES FOR NEW CONSTRUCTION

This section provides a summary of the key considerations in the MultiFamily New Construction Design Guidelines included in this chapter. Wording is designed for brevity, to capture the primary design intent. The full design guideline, its associated context description and design objective, and associated illustrations and captions, should be reviewed. The number of the specific Design Guideline is identified and is directly cross-referenced with the specific guideline later in the chapter.

SITE DESIGN GUIDELINES

SETTLEMENT PATTERNS & NEIGHBORHOOD CHARACTER

BLOCK, STREET & SITE PATTERNS

Preserve and promote the historic plan of streets and alleys as essential to the historic character of the district and setting. [12.1]

Preserve and reinforce the historic street pattern as a unifying framework for varied lot sizes and orientation. [12.2]

Retain and reinforce the permeable historic street pattern as a framework for public access. [12.3]

Maintain the historic integrity of the pattern and scale of lots. [12.4]

Site and design a new building to reinforce and enhance the character of the context and its patterns. [12.5]

THE PUBLIC REALM

Contribute to the public, the civic, realm. [12.6]

Engage the building with the street through a sequence of public to semi-private spaces. [12.7]

Situate and design a building to define and frame the street and spaces in a context-characteristic way. [12.8]

Design a new building on a corner lot to define, frame and contribute to the public realm of both streets. [12.9]

BUILDING PLACEMENT, ORIENTATION & USE

Respect the historic pattern of setbacks and building depth in siting a new building. [12.10]

Orient the front of the building and its entrance to face and engage with the street. [12.11]

Plan and design access arrangements to the site and building as an integral part of the design approach. [12.12]

Include well designed common open space when planning the situation and orientation of the building. [12.13]

Plan for additional common open space at terrace and/or roof level. [12.14]

Design private open space to articulate the design, reduce the scale and create attractive outdoor space. [12.15]

Plan and design common internal and external spaces for solar aspect and energy efficiency. [12.16]
SITE & BUILDING SERVICES & UTILITIES

Site and design service and utility areas away from the frontage and screen from views. [12.26]

Site and screen rooftop and higher level mechanical services from street views. [12.27]

Provide acoustic screening for mechanical services adjacent to residential uses. [12.28]

Locate small utilities such as air conditioning away from primary and secondary facades or fully conceal within the design of the facade. [12.29]

Integrate vents into the design of the building and conceal from view on building facades and roofscape. [12.30]

Site cellular equipment away from street views. [12.31]
LANDSCAPE & LIGHTING

FRONT YARD LANDSCAPE
Design front yard landscaping to coordinate with historic and/or established patterns. [12.32]
Minimize or avoid walls and fencing where they are not characteristic of the historic or topographic context. [12.33]
Maintain the levels and continuity of open space and the associated sense of progression from public to private space. [12.34]
Provide seating as part of the landscape design where a café or restaurant is included within the building. [12.35]

LIGHTING
Design discreet exterior lighting for specific access and use areas. [12.36]
Design architectural lighting to provide visual accent and to respect or strengthen the historic context. [12.37]
Design lighting to integrate with the architecture. [12.38]
Design landscape lighting to enhance layout and planting. [12.39]
Conceal supply and switch equipment for exterior lighting. [12.40]
Conceal utilitarian service lighting from street views and from adjacent properties. [12.41]

BUILDING DESIGN GUIDELINES

BUILDING FORM & SCALE
THE CHARACTER OF THE STREET BLOCK
Design to reflect the building scale of the context as established by the street facade. [12.42]
Design to create and reinforce a sense of human scale. [12.43]
Design to respect access to light and privacy enjoyed by adjacent buildings. [12.44]

FAÇADE COMPOSITION, PROPORTION & SCALE
Design the principal elements of a primary façade to reflect the scale of the block and historic context. [12.45]
Design secondary architectural elements, patterns and modeling to reinforce the massing and primary elements of the building. [12.46]
Respect the role of the design characteristics of symmetry or asymmetry in the established context. [12.47]
PART II  Design Guidelines

HEIGHT

Design for a building height which is compatible with the historic context. [12.48]
Design for a greater stature for the first two stories. [12.49]
Vary the height across the primary façade and/or limit maximum height to part of the plan footprint in a larger building. [12.50]
Step back upper floor/s if a new building would be notably higher than the traditional context. [12.51]

WIDTH

Design for a historically similar façade width. [12.53]

A rhythm of strongly framed balconies can simultaneously create a distinct sense of vertical proportion in the horizontal unity of the building.

MASSING

Respect the established scale and form of the street block and context in designing the massing of the building. [12.54]
Respect characteristic proportions, roof forms and massing. [12.55]

BUILDING CHARACTER & SCALE

FAÇADE ARTICULATION, PROPORTION & VISUAL EMPHASIS

Design to reflect roof forms that are characteristic of the block and district. [12.56]
Design façade proportions to reflect the traditional context and neighborhood. [12.57]
Design for a vertical proportion and emphasis to reduce perceived width. [12.58]
Design for a horizontal proportion and emphasis to reduce perceived height. [12.59]

SOLID TO VOID RATIO & WINDOW SCALE

Design a solid to void ratio which is characteristic of the historic setting. [12.60]
Respect the range of window proportion and scale characteristic of the historic context. [12.61]

RHYTHM & SPACING OF WINDOWS & DOORS - FENESTRATION PATTERN

Design most public interior spaces to face the street. [12.62]
Design a pattern and proportion of windows and doors which is characteristic of the context. [12.63]
Chapter 12. New Construction in Historic Districts

BALCONIES, PORCHES & EXTERNAL ESCAPE STAIRS

Design balconies as an integral part of the architectural composition and as semi-public outdoor private space which can engage with the context. [12.64]

Design an entrance porch, portico or stoop as a principal focus of the façade. [12.65]

Design an escape stair to integrate with the building and situate it to the rear. [12.66]

BUILDING MATERIALS, ELEMENTS & DETAILS

MATERIALS

Use building materials that contribute to a traditional sense of human scale. [12.67]

Use building materials for primary and secondary facades to reinforce affinity with the historic setting. [12.68]

Design and construct with solid masonry materials. [12.69]

Choose materials with a proven durability in the context and the climatic region. [12.70]

Contrasting materials and colors help to frame the building and the balcony portico while enhancing the contribution to the character of the street.

Symmetry and vertical emphasis can effectively enhance a sense of both human scale and architectural stature.

New balconies articulate the original façade adopting complementary 'industrial' design, materials & detailing.

Facade articulation in a series of vertical projecting bays and balconies help to soften and reduce the visual scale of the building.
PART II  Design Guidelines

WINDOWS
Design windows in scale with the setting and the building. [12.71]
Consider windows with a vertical proportion and emphasis. [12.72]
Design window reveals as a characteristic of masonry and public facades. [12.73]
Design for a contextual character, scale and proportion of window and door frame. [12.74]

ARCHITECTURAL ELEMENTS & DETAILS
Design characteristic building elements and details, as expressed in their scale, size, depth and profile. [12.75]
Design a historically characteristic scale of ornamental elements where these are used. [12.76]
Design functional, creative interpretations of elements and details. [12.77]

SIGNAGE – PRINCIPAL & OTHER USES
Place signs where they traditionally would be found in the context. [12.78]
Design signs to express the identity of a non-residential use. [12.79]
Design signs and lettering to respect traditional scale and forms. [12.80]
Design signs for primary and secondary facades as an integral part of the architecture. [12.81]
Design for individual lettering or graphic motif with no or minimal illumination. [12.82]
Design any illumination to be discrete to the lettering or symbol. [12.83]
Integrate signs with the architecture through the use of durable, architectural quality, materials. [12.84]
Conceal fixings, power supply and switch gear. [12.85]
Refer to the historic Design Guidelines for Signs for more extensive advice. [12.86]
Chapter 12. New Construction in Historic Districts

SITE DESIGN GUIDELINES

SETTLEMENT PATTERNS & NEIGHBORHOOD CHARACTER

BLOCK, STREET & SITE PATTERNS

Historic settlement patterns, evident in the plan of streets and alleys and the composition of the urban block, help to establish the distinctive identity of each of the city’s historic districts, and the rich urban ‘grain’ and unique character of the city. These patterns effectively create the ‘infrastructure’ of the character of the district and neighborhood.

Within the framework of the city’s grid layout, the pattern of streets and alleys frequently varies within each block, creating a distinctive character for the street block, its primary street facades and its more intimate interior. Each street block consequently contributes a unique ‘scene’ to the ‘tapestry’ of the historic district and neighborhood.

These street plans, with their internal network of streets, lanes and alleys, help to establish the manner in which primary structures are situated and their orientation within the individual lots. This pattern also influences the disposition of secondary structures and landscape features on the lot and throughout the street block. Such characteristics should be identified, respected and preserved in planning for a new multifamily building.

A key characteristic of an early residential neighborhood is the intimate walkability or ‘permeability’ of the street network. Within the street block itself, the narrow internal streets, lanes and alleys help to create a more intricate pattern and urban ‘grain’, as well as providing access to individual lot frontage and the rear of the lot. They also create the opportunity for a greater spectrum of social vitality and interaction, neighborhood experience and alternative walkable routes.
These settlement and development patterns are also directly influenced by topography, especially in neighborhoods like The Avenues, University and much of Capitol Hill. As the street grid ascends a notable incline, it creates great urban and scenic drama, views and vistas, as the buildings step up or down the hill. Several larger apartment buildings are designed to reflect this street slope in ways which make creative use of the terraced rhythm of the architectural forms, such as vertical bays of projecting balconies.

At the same time the street block, and its network of secondary streets or alleys, provide a common, unifying framework for the varying patterns, scales, dimensions and orientation of the individual lots, and also the primary and secondary buildings. Lot size may vary considerably, with smaller lots and houses being a common characteristic of the interior of many of the City’s large street blocks.

The contrast in character between the exterior and the interior of some blocks establishes a variety in lot and building scale as a key characteristic of several historic districts. Aggregating lots into larger properties, and/or closing sections of street or alley, will adversely affect the historic integrity of the street and settlement patterns. It would also reduce the human scale network and linkages that this pattern helps to create and maintain. In turn, the orientation, scale and form of a building all help to support the sense of a varied, and yet orchestrated, street pattern.

**Design Objective**

The urban residential patterns created by the street and alley network, lot and building scale and orientation, are a unique characteristic of every historic setting in the city, and should provide the primary design framework for planning any new multifamily building.

12.1 The historic plan of streets and alleys, essential to the historic character of a district and setting, should be preserved and promoted. Consider the following:

- Retain the historic pattern of smaller streets and alleys as a particular characteristic of the street block.
- Reinstate sections of secondary street and/or alleys where these have been lost.
- Design for the particular street patterns of e.g. Capitol Hill.
- Respect and retain the distinctive tighter pattern of streets and alleys in The Avenues.
- Refer to the specific design guidelines for the historic district for additional details and considerations. (see PART III).
12.2 The historic street pattern, as the unifying framework for a varied range of lot sizes and buildings, should be preserved and reinforced.

- Retain historic alignments and widths wherever possible.
- Plan the site to avoid adversely affecting the historic integrity of this pattern.

12.3 The historic street pattern, including the network of public and private ways within the street block, should be retained and reinforced.

- Secondary streets and alleys maintain the historic permeability within the street block as a means of access and a historic setting for:
  - Direct and quieter street frontage for smaller buildings.
  - Rear access to the property and to accessory buildings.
  - An attractive focus for community social interaction.
  - An alternative and more intimate choice of routes, helping to reinforce a walkable and livable neighborhood.

12.4 The pattern and scale of lots in a historic district should be maintained, as the basis of the historic integrity of the intricate ‘fine grain’ of the neighborhood.

- Avoid assembling or subdividing lots where this would adversely affect the integrity of the historic settlement pattern.

12.5 A new apartment or multifamily building should be situated and designed to reinforce and enhance the established character, or master plan vision, of the context, recognizing its situation and role in the street block and building patterns.

- Respect and reflect the scale of lots and buildings associated with both primary and secondary street frontages.
- Site a taller building away from nearby small scale buildings.
- A corner site traditionally might support a larger site and building.
- A mid-block location may require careful design consideration to integrate a larger building with an established lower building scale.
- Respect and reflect a lower scale where this is characteristic of the inner block.

A principal projecting wing of the street facade, combined with projecting balconies, can effectively maintain a distinct human scale in a much larger building.
PART II   Design Guidelines

THE PUBLIC REALM

How buildings are sited on their lot, where the front door is, and how they relate to each other, help to determine neighborhood form and character. In the city’s historic neighborhoods, where development patterns are largely complete, the buildings and landscaping have had the opportunity to mature to create an often coherent and distinctive spirit of place, and a tangible sense of time and stability.

Essential, therefore, to the design of a new building, is the careful consideration of how it will relate to the physical context of the street, the buildings adjacent and across the street, as well as the historical and cultural patterns of the context and neighborhood. A new building should inspire, while drawing some of that inspiration from the inherent patterns which help to create the historic character of the setting.

A sensitively designed new multifamily development should relate to neighboring buildings to the side and to the rear in terms of setbacks, height, massing, scale, the arrangement of shared and private open spaces, and landscaping. This is particularly important for lots situated on the boundary of higher-density and lower-density zones, or in zones which permit a higher density than the established scale. A taller, insensitively designed, larger building could adversely affect the setting and amenities enjoyed by existing, smaller scale buildings. The same contrast of scale and character will often arise between the exterior and the interior of the street block.

Compatible design is not necessarily the repetition of existing or historical design patterns. It does however rely on the recognition and interpretation of these patterns, whether traditional or contemporary, in a way that creatively complements the distinctive and eclectic streetscapes that characterize many of Salt Lake City’s historic districts and older neighborhoods.
Of major importance, is how a proposed building would relate to the public realm; essentially this is the space framed by the buildings facing each other across the street. The public realm consists of the street pavement, park strips, sidewalk, street trees and their planters, and the front yards of buildings that line and frame the street. The character of the public realm is therefore determined by the width of the street and sidewalks, as well as the setbacks, building height, massing, frontage, and style of the buildings that frame this realm, combined with their associated landscaping.

The character of streets that have remained relatively unchanged for 50 or more years is usually more consistent and more readily defined. Residential and commercial streets will have different characteristics. In either case, the design of a new multifamily building should respond to the dominant, historical character of the street and the neighborhood context.

Streets that have experienced considerable development and change will be less well defined. Buildings may have inconsistent setbacks, massing, and frontages, for example. There are sections of several historic districts in the city where this can be identified, and the dominant character of such streets can be less obvious. In such an instance, the design of a new building presents the opportunity to identify both the strengths and weaknesses of the current setting and to help forge a stronger urban and human scale character.
Design Objective

A new multifamily building should respect the characteristic placement, setbacks, massing and landscape character of the public realm in the immediate context and the surrounding district.

12.6 A new building should contribute in a creative and compatible way to the public and the civic realm.

12.7 A building should engage with the street through a sequence of public to semi-private spaces.

12.8 A new multifamily building should be situated and designed to define and frame adjacent streets, and public and common spaces, in ways that are characteristic of the setting.

• Reflect and/or strengthen adjacent building quality, setbacks, heights and massing.

• Reinforce the historic streetscape patterns of the facing primary and secondary streets and/or alleys.

12.9 A building on a corner lot should be designed to define, frame and contribute to the historic character of the public realm of both adjacent streets.

• The street character will also depend on the adjacent street blocks and frontage.

• Building setbacks may be different.

• The building scale may also vary between the streets.

Caithness Apartments integrate sensitively with the scale of the adjacent context and continue the architectural detailing and interest on two street frontages on this corner site.

A contrast in facade design and materials, and the modeling of the facade can help to break down the lateral scale, while enhancing the visual interest and presence of the building.

The interplay of architectural forms and varied massing can retain a sense of human scale and achieve a visual strength on the corner.
BUILDING PLACEMENT, ORIENTATION & USE

In the historic neighborhoods of the city, a multifamily building tends to be situated towards the front of the lot, with most of the private open space behind, or perhaps to one side. Side yard space is usually limited and shared with adjacent properties. Front setbacks may vary, especially for larger multifamily buildings, but tend to be within a well-defined range, helping to establish a common visual relationship between buildings of differing scale and character. On occasion, a taller apartment building may be set back farther than lower scale neighbors.

The shared sense of openness enjoyed by residents in front of and behind a building will depend upon the situation of the building, and the coincidence of private open spaces. With a larger multifamily building, the configuration of the building and its open space become more critical if the scale is to integrate successfully with the established building pattern. It is important that this pattern of front and side setbacks, and the relationship and rhythms they establish for the neighborhood, is respected and reflected in the design of a new building.

Buildings tend to be sited in alignment with their lots, creating both a defined pattern of frontages and also a sequence of spaces between the buildings and a corresponding sense of visual rhythm along the street. The frontage of the building tends to be the focus of the greatest architectural interest. With the greater height and prominence of a larger apartment building, however, the side and rear facades will also be important. All facades are likely to play a significant role as part of a very visible public realm and historic architectural context.

Historically, apartment and other multifamily buildings in the city have a primary entrance, and...
Similarly, a new multifamily building should be planned around both internal and external common social spaces and courtyards. Externally, common courtyards or patios should be positioned and designed for solar aspect, and landscaped for shade and energy efficient design. Common external spaces above ground level can also notably activate the vitality of the building, site and context.

Street-facing windows further help to define the human scale of the building, reflecting the role and function of parts of the building, while providing passive security surveillance. Important or more formal rooms that are occupied on a regular basis, such as social space and living rooms, should face and engage the street where possible.

**Design Objective**

A new multifamily building should reflect the established development patterns, directly address and engage with the street, and include well planned common and private spaces, and access arrangements.

12.10 The established historic patterns of setbacks and building depth should be respected in the siting of a new multifamily building.

12.11 The front and the entrance of the building should orient to and engage with the street.

- A new building should be oriented parallel to lot lines, maintaining the traditional, established development pattern of the block.
- An exception might be where early settlement has introduced irregular street patterns and building configurations, e.g. parts of Capitol Hill.

12.12 Access arrangements to the site and the building should be an integral part of the
Design Guidelines for New Construction

planning and design process at the earliest stage.

12.13 The situation, orientation, configuration and design of a new multifamily building should include provision for common exterior open spaces at ground level. Site and design such space/s to address the following:

- Reducing the bulk and the scale of the building.
- Configuration for residential amenity and casual social interaction.
- Shelter from traffic and traffic noise.
- Plan for solar access and seasonal shade.
- Landscape and light to enhance residential relaxation, enjoyment and neighboring environmental quality.

12.14 Consider additional common open space on higher terrace or roof levels to enhance residential amenity and city views.

- Locate and design to preserve neighboring privacy.
- Plan and design for landscape amenity and best practices in sustainable design. (PART IV)

12.15 Private open space for each unit, whether ground level, terrace or balcony space, should be designed to create attractive outdoor space, and to help articulate the design of the building to reduce its bulk and scale.

- Private space should be contiguous with the unit.
- Private space should be clearly distinguished from common open space.

12.16 Common internal and external social space should be planned and designed to take advantage of solar aspect and energy efficient design.

- See Guidelines for Sustainable Design (PART IV)
SITE ACCESS, PARKING & SERVICES

Much of the attraction of an urban environment relies upon the quality of its streetscapes. Planning an individual multifamily site and building should directly evaluate and address the complex relationship between vehicular streets, sidewalks, sidewalk amenities, landscaping, and the location, form and continuity of building edges. It is also important to plan for the location and design of parking areas, service areas and site utilities to ensure that they do not detract from the character and quality of the building and the urban experience.

Design Objective

The site planning and situation of a new multifamily building should prioritize access to the site and building for pedestrians and cyclists, motorized vehicular access and parking should be discreetly situated and designed, and building services and utilities should not detract from the character and appearance of the building, the site and the context.

PEDESTRIAN & BICYCLE

A new multifamily building should be designed to prioritize access and use by people walking and cycling. Site access should be planned to nearby transit routes and also walking, cycling routes and multi-use trails in the vicinity, as well as adjacent secondary streets and rear alleys.

12.17 The primary public entrance to the building should be afforded priority and prominence in access from the street, and appropriately scaled in the design of the street façade/s.

- Avoid combining with any vehicular access or drive.
- Provide direct access to the sidewalk and street.
- Landscape design should reinforce the importance of the public entrance.
12.18 Where the secondary street or alley network is available, rear public access should be retained and used.

- Residential access options to the site and building should be retained and/or maximized.
- Alternative vehicular access from secondary streets and alleys should be retained and reused.

12.19 Bicycle parking should be situated so that it is convenient and readily accessible within or immediately adjacent to the building, including design for secure storage.

12.20 Convenient storage space for each residential unit should be included to obviate the use of personal outdoor balcony space for bicycle and other storage.

VEHICULAR - CARS & MOTORCYCLES

Vehicular access should minimize conflict with other modes of transportation, especially pedestrian traffic. Such access should also protect residential streets from the effects of undue congestion and noise, and encourage multimodal transportation. It should provide for the safe and efficient movement of pedestrians, bicycles and vehicles. Site planning and design should promote pedestrian safety by segregating pedestrian and vehicular points of access, providing for safe and efficient vehicle ingress and egress. A vehicle entrance should be positioned to preserve the continuity of the pedestrian streetscape, and placed discreetly in relation to the primary façade of the building.

Vehicular ramped access is juxtaposed with street level garage entries, all situated to the rear of the building.

Building proximity can provide discreet parking options back from the street.
12.21 A vehicular access and drive should not be combined with a pedestrian access and entrance.

- Place vehicle access away from commercial uses such as cafe, restaurant or retail.

12.22 A vehicular access and driveway should be discreetly placed to the side or to the rear of the building.

- A vehicular entrance which incorporates a ramp should be screened from street views.
- Landscape should be designed to minimize visual impact of the access and driveway.

12.23 A single curb cut or driveway should not exceed the minimum width required.

- Avoid curb cuts and driveways close to street corners.

12.24 Driveways serving groups of similar uses should be consolidated to minimize visual intrusion, and to provide less interruption to the sidewalk, pedestrian character and flow.

- Curb cuts should be shared between groups of buildings and uses where possible.
- Joint driveway access is encouraged.

12.25 Wherever possible, vehicular parking should be situated below the building, or alternatively behind the building in a manner that does not conflict with pedestrian access from the street.

- Surface parking areas should be screened from views from the street and adjacent residential properties.
SITE & BUILDING SERVICES & UTILITIES

External utility areas and services should not affect the appearance and character of either the site or the building, as they are perceived from the street and adjacent buildings. Location should be planned to the rear of the site and/or building, with internal or enclosed storage facilities provided for refuse. Roof mounted equipment should be planned, positioned, selected, housed and screened to avoid any negative impact on views from the public way and nearby buildings.

Interior Planning Decisions with Exterior Ramifications

There are many decisions regarding the internal planning, layout and functionality of a new multi-family building which can have significant external visual impact on the appearance and character of the building. Without care and attention in the early planning stages, these may adversely affect the architectural character of the building, marring its appearance and contribution to its historic setting.

PLAN > ORGANIZE > DESIGN > SCREEN

Thorough planning for HVAC, and other common and individual utility functions, can minimize the negative external visual impact of air conditioning equipment, and a variety of exhaust and intake vents located on the building facades or rooftops. Where some facade location is unavoidable, venting should be screened from public view, or integrated, grouped, designed and detailed as inobtrusively as possible.
The following design objective should be a central consideration in the early planning stages of any project, and should guide the design of ground and higher level facilities and utilities, including air handling and generator equipment.

**Design Objective**

The visual impact of common and individual building services and utilities, as perceived from the public realm and nearby buildings, should be avoided or completely integrated into the design of the building.

**12.26 Utility areas and other ground level building services should be situated away from the frontage of the building.**

- Screen from street views and adjacent buildings.
- Integrate these facilities with the architecture of the building through design, color and the choice of materials.

**12.27 Rooftop and other higher level mechanical services and utilities should be situated away from, and also screened from, street views.**

- Locate the utility equipment within an architectural screen or dedicated housing.
- Enclose the facility within a roof that is an integral part of the building.
- Select and locate the utility equipment so that it is not seen from adjacent primary and secondary streets.
- Finish to match the building where visibility might occur.

**12.28 Mechanical services should be acoustically screened from nearby residential properties.**

- Screening should be compatible with and also integrated into the design of the building.
12.29 Small utilities, such as air conditioning units, should be located away from primary and secondary facades of the building, unless integrated and fully concealed as part of the building design.

- Avoid placing AC or other equipment in balcony spaces.

12.30 Exhaust and intake vents and pipes on facades and roofs should be avoided through early and coordinated planning of facilities for common utility systems.

- Coordinate, group and screen from view where any might penetrate the facade.
- Finish to match the facade color unless specifically designed as a detailed architectural embellishment.

12.31 Cellular phone and other antennae, and associated equipment, should not be visible from the public way.

- Plan for common satellite TV equipment, with positioning to avoid or minimize any visual impact.

**LANDSCAPE & LIGHTING**

**(FRONT YARD LANDSCAPE)**

The character of an attractive street will depend in part on the landscape quality of the open spaces of those buildings that front onto and frame it. This is particularly true in the city’s historic neighborhoods. Though primarily located on private property, the front yard of the building is part of the public realm and should consequently be designed in a manner that defines, unifies and enhances the public realm in that setting. A front yard designed in isolation, relating exclusively to the needs and form of a new building, is more likely to have a negative effect on the overall character of the established historic streetscape.
The planning and landscaping of a larger apartment building and site will have a significant impact upon the character of the streetscape and public realm. The design should consequently both respect and contribute creatively to this historic character. Without careful consideration, design which is too self-focused can divide the public realm into a discontinuous and random series of private spaces and front yard open spaces.

The landscape design for the front yard and frontage of the building has the potential to accentuate the architectural quality and the visual contribution of the building to the street scene. It can also help to define the legibility of public, common and private uses within the building, and complement the public access and entrance.

**Design Objective**

The design of residential and commercial front yard landscapes should contribute to a coherent and creative public realm.

12.32 The front yard landscaping for a new multi-family building should coordinate with historic and/or established patterns.

- Evaluate existing historic patterns and character.
- Design a creative complement to the established historic character.
12.33 Landscape walls and fences perpendicular to the street, which could separate front yards, should be minimized or avoided where this separation is not an inherent part of the established topographic or historic character.

- Retaining walls provide significant opportunity for creative design and natural materials, where they are a characteristic of the setting.
- Where retaining walls are a part of established historic character, avoid excessive retaining wall height by terracing a change in grade.
- Design any fencing to be low and transparent in form.

12.34 Where it is a characteristic of the street, a front yard should be designed and graded to reflect this pattern, retaining the relationship and continuity of open space, and the sense of progression from public to private space.

- Reflect the historic grading and landscaping of the area between the street pavement and the building.
- The building should readily engage with the street and public realm.

12.35 Where a new multifamily building includes another use/s, such as restaurant or café, seating should be considered as part of the landscape design for front yard area and/or sidewalk.

- Design any seating as a creative element of the landscape design.
- Low walls in the landscape design can provide the opportunity for integrated informal seating.
- Use ergonomic and durable materials in the design and choice of seating, e.g. wood & metal.

LIGHTING

Lighting a site and a building is both a necessity and an opportunity to accentuate the attractive impact of the architectural and landscape design at night. Lighting identifies, guides and provides a sense of security for the principal entrance, and other sections of the building and site. Designed as visual accent, lighting can also provide an alternative presentation and experience of the design and character of a building and its landscaping.
Lighting of the site and/or the building should not however compete with or upstage the architectural importance of historic buildings in the context. Without careful thought, lighting can detract from the site, the landscaping, the building and the historic context, and adversely affect the experience and amenities of adjacent or nearby residents or users.

**Design Objective**

External lighting of the building and site should be carefully considered for architectural accent, for basic lighting of access and service areas, and to avoid light trespass.

**12.36 Exterior lighting should be discreetly designed to illuminate entrances and exterior spaces such as balconies, terraces or common spaces.**

- Design to avoid light trespass beyond the area to be lit.
- Design for creative and discrete task lighting.
Chapter 12. New Construction in Historic Districts

12.37 Where architectural lighting is appropriate, it should be designed to strengthen the historic context, providing selective visual accent to specific elements of the primary facades, using discreet and creatively designed light fittings.

- Avoid general illumination of a façade or undue prominence of an individual building, since this will detract from the nighttime character of the historic setting.
- Design building light fixtures for architectural quality and durability.
- Shield architectural illumination at higher levels to avoid a view of any exposed light source from the street or adjacent occupied space.

12.38 Building lighting should be discreetly designed to integrate, in design, location and choice of fittings, with the architecture of the building.

12.39 Landscape lighting should be designed discreetly and creatively to enhance pathways and entrances, while accentuating planting design.

- Light specific design features.
- Avoid light trespass and glare.

12.40 Conduit and electrical supply equipment for both architectural and utility light fittings should be concealed from view from all streets and adjacent properties.

- Plan and design supply runs at an early stage to avoid external surface conduit and equipment.
- Conceal within, or integrate with, the design of the building.

12.41 Utilitarian building lighting for service areas should be concealed from view from primary and secondary streets, and from adjacent properties.

- Use effective ‘cut-off’ shields to confine light spread.
- Position light fittings to reduce public visibility.
- Choose fittings and finishes that complement the design of the building.

From street light to principal entrance.
BUILDING DESIGN GUIDELINES

BUILDING FORM & SCALE

THE CHARACTER OF THE STREET BLOCK

Although buildings are designed to accommodate a variety of uses, as ‘architecture’, they are designed to be so much more. Their contribution to the distinctive culture, art, building craft and palette of materials of the city, combine to characterize and define the street. They also create a unique “sense of place” associated with the neighborhood, and contribute to the quality of the urban experience and livability inherent to the city’s many vibrant, mixed-use urban neighborhoods.

Buildings and architecture that enhance the urban realm of a historic setting pay careful attention to urban design patterns of massing, form, façade articulation, design detail and materials. These patterns help to knit together a complementary sense of ‘randomness’, emanating from eclectic architectural fashion and incremental development.

The resulting visual harmony, so notable in many of the city’s historic districts, relies heavily upon a common building scale. The sensitive design of a larger apartment building consequently will depend upon integrating human scale patterns with some degree of visual spontaneity and variety.

A Sense of Human Scale

The character of an attractive and vibrant urban neighborhood will substantially rely upon how the buildings, individually and collectively, create and maintain a sense of human scale. This can be expressed by the design composition and articulation of the facade, the primary architectural elements, details and materials.
In a predominantly single family residential neighborhood, a sense of human scale derives from the scale of the building as a whole and from the patterns inherent in its principal architectural elements, such as projecting bays, articulation, roof forms, fenestration, entrance and front porch. The choice and detailing of materials and color also play an important role in helping to create or emphasize visual textures and vitality.

With a multifamily building which is in scale with a single family setting, the same characteristics and visual dynamics are in play. For a multifamily building of greater scale in a single family context, i.e. greater relative height and/or width, creating a sense of compatible human scale will depend upon the primary architectural elements, their articulation and design expression, and the materials and details employed in their design.

These characteristics depend in turn upon the composition and articulation of the primary and secondary facades. This may be vertical, in the form of alternating projecting or recessed wings or bays composing the width or length of the façade. It may also be horizontal, stepping back upper floor/s where these exceed the average height of the context.

Human scale characteristics also include the design of the principal entrance, the stature and modeling of the first floor as the base for the façade, and the top floor/s forming a top or a cap for the design of the façade. The balconies, whether individual or rising in vertical tiers as with many of the city’s historic apartment buildings, and the detailing and palette of materials, also play a significant role.

The mass and scale of a building are fundamental issues in the design of a new multifamily or apartment structure in one of the city’s historic districts. The traditional scale of single family residences is a characteristic of most of the historic

The composition and articulation of the street facade is accentuated in intricately detailed fenestration and brickwork.

Design Guidelines for New Construction

Projecting balcony arrangements, a varied fenestration pattern and window reveals embellish a terracotta panelled facade, helping to reduce the apparent scale, while creating architectural interest.
neighborhoods, with houses ranging from one to two and a half stories. Although the actual height can vary considerably along any given street, the similarity of overall scale of the variety of architectural elements establishes and enhances the pedestrian-friendly character of many of the streets and districts. It is important that the design of a new apartment building respects these disparities in scale, especially in the respect of potential impact upon access to light, sunlight and privacy enjoyed by adjacent buildings and residents.

A range of apartment buildings is characteristic of the city’s historic neighborhoods, some equating closely with the predominant single family residential height and scale. Others rise through three, four and more stories, often on significantly larger lots. These buildings are increasingly characteristic of the more important streets progressing towards the downtown area. South Temple, First Avenue and many adjacent streets provide the setting for several larger apartment buildings. City apartment types (Part I, Section 4) are illustrated throughout the guidelines.

Design Objective

The form, scale and design of a new multifamily building in a historic district should equate with and complement the established patterns of human scale characteristics of the immediate setting and/or broader context.
12.42 A new multifamily building should appear similar in scale to the scale established by the buildings comprising the current street block facade.

- Subdivide a larger mass into smaller “modules” which are similar in size to buildings seen traditionally.
- The scale of principal elements, such as entrances, porches, balconies and window bays, are critical to creating and maintaining a compatible building scale.

12.43 A new multifamily building should be designed to create and reinforce a sense of human scale. In doing so consider the following:

- Design building massing and modulation to reflect traditional forms, e.g. projecting wings and balcony bays.
- Design a solid-to-void (wall to window/door) ratio that is similar to that seen traditionally.
- Design window openings that are similar in scale to those seen traditionally.
- Articulate and design balconies that reflect traditional form and scale.
- Design an entrance, porch or stoop that reflects the scale characteristic of similar traditional building types.
- Use building materials of traditional dimensions, e.g. brick, stone, terracotta.
- Choose materials that express a variation in color and/or texture, either individually or communally.

12.44 A new multifamily building should be designed to respect the access to light and the privacy of adjacent buildings.
BUILDING FAÇADE COMPOSITION, PROPORTION & SCALE

The design composition of the front and sometimes the side facades of an apartment building have traditionally taken the form of a symmetrical arrangement of wings, or rising balcony bays, framing a central entrance. Such modulation of the building varied with the scale, type and style, often enclosing a central recessed entrance bay.

This design approach is significant through its application of a comprehensive architectural language designed to reinforce the basic symmetry. The result is a complex, refined and intricate series of buildings which acknowledge, and in many ways help to reinforce, the distinct sense of human scale so characteristic of the single family residential context.

12.45 The principal elements of the front facade should reflect the scale of the buildings comprising the block face and historic context.

- The primary plane/s of the front facade should not appear to be more than a story higher than those of typical historic structures in the block and context.
- Where the proposed building would be taller than those in the historic context, the upper floor/s should step back from the plane of the façade below.
- A single wall plane or bay of the primary or secondary facades should reflect the typical maximum facade width in the district.
12.46 The secondary elements, patterns and modeling of the facade composition should reinforce the massing and scale established by the primary elements of the facade/s.

- Design a fenestration pattern and a window scale that reflect those of the context and historic district.
- Arrange and design balconies to articulate the architecture of both the primary and secondary facades.
- In a taller structure, design the ground floor/s to differentiate in stature, plane, detailing and/or materials from the façade above.
- Express the ‘base’ for the front facade/s of the building through primary architectural elements and patterns, e.g. entrance/porch/portico, fenestration.
- Reinforce this definition through detailing and materials.
- Design a distinct ‘foundation’ course for the primary and secondary facades, employing a combination of wall plane, materials, texture and/or color.
- In a taller structure, consider defining a top floor by a distinct variation in design treatment as part of an architectural hierarchy in the design of the facade.

12.47 Respect the role that architectural symmetry can play in the form of the established historic street frontage and wider setting.

- This can be effective in composing the modulation of a wider façade, helping to integrate this within a smaller scale setting.
- Evaluation of historic apartment façade symmetry, or asymmetry, will provide valuable direction and inspiration.
Part II  Design Guidelines

HEIGHT

In many historic settings in the city, a similarity or affinity in building heights can contribute to the sense of visual cohesion and continuity of an individual district, helping to define its distinct identity. In this context, the height of a new building should not overwhelm historic buildings in the immediate setting, and should fall within the range of heights defined by the historic structures in the district.

A similarity in the height of prominent building features, such as porches and cornices, can be equally important, especially where building heights might be more inconsistent. Such features help to reduce the sense of scale and often appear to align along the street. This in turn helps to create a sense of affinity through a coherent visual rhythm and continuity.

Where the zoning context might allow for a multifamily building higher than the prevailing traditional scale, designing to achieve and maintain a sense of human scale and context sensitivity in the architectural language remains a primary goal. Limiting the maximum height to parts of the building as a whole, and to sections of the primary facades, can effectively reduce the apparent massing of the building overall. Other design interventions, such as the modulation of the facades and associated visual emphasis, can help to reduce the apparent height, and consequently the perceived scale, of the building.

Design Objective

The maximum height of a new multifamily building should not exceed the general height and scale of its historic context, or be designed to reduce the perceived height where a taller building might be appropriate to the context.
12.48 The building height should be compatible with the historic setting and context.

- The immediate and wider historic contexts are both of importance.
- The impact upon adjacent historic buildings will be paramount in terms of scale and form.

12.49 Characteristic of traditional buildings types and context, the first two floors should be designed with greater stature.

12.50 Where there is a significant difference in scale with the immediate context, the building height should vary across the primary façade, and/or the maximum height should be limited to part of the plan footprint of the building.

- Step back the upper floor/s of a taller building to achieve a height similar to that historically characteristic of the district.
- Restrict maximum building height to particular sections of the depth and length of the building.

12.51 The upper floor/s should step back where a taller building will approach established neighborhoods, streets or adjacent buildings of typically lower height.

12.52 The primary and secondary facades should be articulated and modulated to reduce an impression of greater height and scale, and to enhance a sense of human scale.

- Design a distinctive and a taller first floor for the primary and secondary facades.
- Design a distinct top floor to help terminate the façade, and to complement the architectural hierarchy and visual interest.
- Design a hierarchy of window height and/or width, when defining the fenestration pattern.
- Consider designing for a distinctive projecting balcony arrangement and hierarchy.
- Use materials and color creatively to reduce apparent height and scale, and maximize visual interest.
WIDETH

In many of the city’s older and historic districts, buildings were designed to be similar in width to nearby structures, often echoing similar lot widths. This helped to establish a distinctive single family residential scale for the neighborhood. A sense of rhythm and continuity emerge when these buildings are evenly spaced along the street block.

Designing a new multifamily building, the perceived width of a new building façade should appear to be similar to the patterns and modulation established by historic buildings in the context in order to maintain this sense of visual rhythm and continuity of scale.

Where a new multifamily building would be wider than those in the historic context, it should be subdivided into modules of similar width to traditional buildings, and/or should step back towards the corners of the primary facade. This is a design approach which is widely and effectively used in many of the larger early apartment buildings across the city.

Design Objective

The design of a new multifamily building should articulate the patterns established by the buildings in the historic context to reduce the perceived width of a wider building and maintain a sense of human scale.
12.53 A new multifamily building should appear similar to the width established by the combination of single and multifamily historic buildings in the context.

- Reflect the modulation width of larger historic apartment buildings.

- If a building would be wider overall than structures seen historically, the facade should be subdivided into significantly subordinate planes which are similar in width to the building facades of the context.

- Step back sections of the wall plane to create the impression of similar façade widths to those of the historic setting.
PART II Design Guidelines

MASSING

12.54 The overall massing of a new multi-family building should respect and reflect the established scale, form and footprint of buildings comprising the street block and historic context.

- Modulate the building where height and scale are greater than the context.
- Arrange the massing to step down adjacent to a smaller scale building.
- Respect, and/or equate with the more modest scale of center block buildings and residences where they provide the immediate context.

12.55 The proportions and roof forms of a new multifamily building should be designed to respect and reflect the range of building forms and massing which characterize the district.

- Focus on maintaining a sense of human scale.
- The variety often inherent in the context can provide a range of design options for compatible new roof forms.
- Vary the massing across the street façade/s and along the length of the building on the side facades.
- Respect adjacent lower buildings by stepping down additional height in the design of a new building.
BUILDING CHARACTER & SCALE

FAÇADE ARTICULATION, PROPORTION & VISUAL EMPHASIS

While there may be great variety inherent in the architectural styles and façade composition in most historic districts, a similarity of building scale and forms contributes to a sense of visual continuity, identity and human scale. To maintain this relationship and visual coherence, a new building should have basic roof and building forms that are similar to those seen traditionally.

In a setting of single family houses, the roof may be the single most important element in the overall form of the building, capping the building with distinguishing profiles and geometry which often differentiate style and type. The scale and character of an established historic context will also provide many of the design criteria for a larger multifamily building. In this case, a sensitive architectural composition of the primary and secondary facades can achieve a visual compatibility through appropriate proportion and visual emphasis, helping to mediate between buildings of different scale.

Creating a sense of human scale in the design of a larger multifamily building will rely in major part on the modulation of the primary and secondary facades. This can be achieved through the articulation of major vertical sections of the façade, and also the vertical plane of specific key floors of the building. Articulation plays a key role in creating the proportions of a façade, while in turn the proportions help to establish the visual emphasis of the primary and secondary facades of the building, and the way the building relates to the context.
Visual Emphasis

Visual emphasis can be vertical, horizontal or balanced. It will appear differently when viewed in direct ‘elevation’ or more obliquely along the street frontage, and will vary with the light and shadow across the day.

A strong vertical emphasis can be effective in creating a sense of compatible façade width in a larger building. Correspondingly, a horizontal emphasis can help to reduce an impression of excess height in a larger building.

Other design characteristics, such as the ratio of solid to void (wall to window), fenestration (window) pattern, window scale and proportion, and the depth of window reveals (the degree of setback of window plane from wall plane), will also play a positive role in creating the visual emphases of the building.

A single family house can be categorized by its visual emphasis. This might be vertical, in for example Queen Anne or Victorian styles, horizontal as with the bungalow type, or more balanced in, for example, the Foursquare house type. Frequently, a street block might be composed of buildings reflecting a complete spectrum of visual emphasis. An affinity in character is often achieved through a common scale and shared architectural elements along a consistent frontage line.

The visual emphasis in the design of a new multi-family building should be informed by an evaluation of its context. Analyze the neighboring buildings on both sides of the street, and from this review, identify how a new design can both equate with and complement the existing character. An increase in scale, for example, can often be more effectively integrated, and can appear more compatible, using a design composition with a more vertical emphasis.
Chapter 12. New Construction in Historic Districts

Design Objective
The design of a new multifamily building should relate sensitively to the established historic context through a thorough evaluation of the scale, modulation and emphasis, and attention to these characteristics in the composition of the facades.

12.56 Roof forms should reflect those seen traditionally in the block and within the historic district.

- Flat roof forms, with or without parapet, are an architectural characteristic of particular building types and styles, including many historic apartment buildings.
- Gable and hip roofs are characteristic of the roof forms of smaller scale buildings in most residential historic areas, and in specific styles of historic apartment buildings.
- Where it is expressed, roof pitch and form should be designed to relate to the context.
- In commercial areas, a wider variety of roof forms and building profiles may be evident, providing a more eclectic architectural context, and wider range of potential design solutions.
- Consider roof profiles when planning the location and screening of rooftop utilities.

12.57 Overall facade proportions should be designed to reflect those of historic buildings in the context and neighborhood.

- The “overall proportion” is the ratio of the width to the height of the building, especially the front facade.
- The modulation and articulation of principal elements of a facade, e.g. projecting wings, balcony sequence and porches, can provide an alternative and a balancing visual emphasis.
- With townhouse development, the individual houses should be articulated to identify the individual unit sequence and rhythm.
- See the discussion of individual historic districts (PART III) and the review of typical historic building styles (PART I) for more information on district character and facade proportions.

A horizontal corner emphasis frames a series of vertically proportioned street facades.

A vertical, gabled corner accent framed by projecting front facade, secondary side gable and rising chimney stack.
12.58 To reduce the perceived width and scale of a larger primary or secondary façade, a vertical proportion and emphasis should be employed. Consider the following:

- Vary the planes of the façade for all or part of the height of the building.
- Subdivide the primary façade into projecting wings with recessed central entrance section in character with the architectural composition of many early apartment buildings.
- Modulate the height down toward the street, and/or the interior of the block, if this is the pattern established by the immediate context and the neighborhood.
- Modulate the façade through the articulation of balcony form, pattern and design, either as recessed and/or projecting elements.
- Vary the planes of the primary and secondary facades to articulate further modeling of the composition.
- Design for a distinctive form and stature of primary entrance.
- Compose the fenestration in the form of vertically proportioned windows.
- Subdivide horizontally proportioned windows using strong mullion elements to enhance a sense of vertical proportion and emphasis.
12.59 A horizontal proportion and emphasis should be designed to reduce the perceived height and scale of a larger primary or secondary façade. Consider the following:

- The interplay of horizontal and vertical emphasis can create an effective visual balance, helping to reduce the sense of building scale.
- Step back the top or upper floors where a building might be higher than the context along primary and/or secondary facades as appropriate.
- Design for a distinctive stature and expression of the first floor of the primary, and if important in public views, the secondary facades.
- Design a distinct foundation course.
- Employ architectural detailing and/or a change in materials and plane to emphasize individual levels in the composition of the facade.
- Design the fenestration to create and/or reflect the hierarchy of the façade composition.
- Change the materials and/or color to distinguish the design of specific levels.

The addition of the alternating projecting steel balconies introduces an intricate horizontality which in turn helps to reduce the apparent scale of the building.

Differentiation in the design of the first floor and the top floor with tiled roof paprapet help to frame the facade and reduce the perception of height.

A distinct base and a change in design composition for the upper floors help to reduce a sense of height and scale.
SOLID TO VOID RATIO, WINDOW SCALE & PROPORTION

The solid to void (wall to window) ratio is an effective gauge of design compatibility, which can be used across a spectrum of building types, styles and scales. Where there is a distinct relative difference, i.e., too much wall to window opening, or window to wall, it tends to be readily apparent.

Such an imbalance, consequently, can adversely affect the perceived scale of the building. Large areas of uninterrupted wall or window tend to create or reinforce an impression of greater scale, even where the scale of the building might not be so different. The scale of windows in particular can radically affect how a building is perceived. Significantly larger windows can work against the objective of a shared sense of human scale inherent in the design.

In a historic residential district a building might be a roughly rectangular mass of solid wall and openings for windows and doors. Buildings tend to share a similar solid to void ratio, resulting in an affinity in scale and character across many different types, styles and scales. It is important therefore that this solid to void ratio is echoed in a new building, especially if a new building is larger than the prevailing established scale. An exception would be in a mixed use building, where the first floor would be designed with commercial or office window ratios and dimensions.

Departures from this design principle will be less apparent where such a departure is limited in area, and where other common characteristics are shared. This relationship and affinity is a characteristic of many of the city’s larger historic apartment buildings, where the greater scale is mediated by a similar solid to void ratio, and usually the scale and proportion of the windows.
Design Objective

The design of a new multifamily building in a historic context should reflect the scale established by the solid to void ratio traditionally associated with the setting and with a sense of human scale.

12.60 The ratio of solid to void (wall to window) should reflect that found across the established character created by the historic structures in the district. Consider the following:

- Achieve a balance, avoiding areas of too much wall or too much window.
- Large surfaces of glass can be inappropriate in a context of smaller residential buildings.
- Design a larger window area with framing profiles and subdivision which reflect the scale of the windows in the established context.
- Window mullions can reduce the apparent scale of a larger window.
- Window frame and mullion scale and profiles should be designed to equate with the composition.

12.61 Window scale and proportion should be designed to reflect those characteristic of this traditional building type and setting.
RHYTHM & SPACING OF WINDOWS & DOORS – THE FENESTRATION

Closely related to the design criterion of solid to void is that of the fenestration. The arrangement of window and door openings in the composition of the facade, their grouping and/or individual placement (summarized as the ‘fenestration’ or the ‘fenestration pattern’) will be an essential characteristic of the architectural composition of the primary facade.

The fenestration is also central to defining the character of the building, and consequently its contribution to the contexts of the street and the district. The fenestration consequently will reflect the use of internal space.

The plan layout for the building should arrange private rooms, such as bathrooms, on secondary facades. With townhouse development, the repeating rhythm of the pattern of windows and doors should be a key characteristic of the design of the street facade.

When similar patterns are shared between very different buildings it creates a sense of affinity and visual continuity across a variety of architectural forms, styles and scales. The fenestration is a key characteristic in creating, and also maintaining, a sense of human scale within a historic setting.

Design Objective

The window pattern, the window proportion and the proportion of the wall spaces between, should be a central consideration in the architectural composition of the facades, to achieve a coherence and an affinity with the established historic context.
12.62 Public and more important interior spaces should be planned and designed to face the street.

- Their fenestration pattern consequently becomes a significant design element of the primary facade/s.
- Avoid the need to fenestrate small private functional spaces on primary facades, e.g. bathrooms, kitchens, bedrooms.

12.63 The fenestration pattern, including the proportions of window and door openings, should reflect the range associated with the buildings creating the established character of the historic context and area.

- Design for a similar scale of window and window spacing.
- Reflect characteristic window proportions, spacing and patterns.
- Design for a hierarchy within the fenestration pattern to relieve the apparent scale of a larger facade, and especially if this is a characteristic of the context.
- Arrange and/or group windows to complement the symmetry or proportions of the architectural composition.
- Emphasize the fenestration pattern by distinct windows reveals.
- Consider providing emphasis through the detailing of window casing, trim, materials, and subdivision, using mullions and transoms, as well as the profiles provided by operable/opening windows. See also guideline 12.71-74 on window detailing.
PART II  Design Guidelines

BALCONIES, PORCHES & EXTERNAL ESCAPE STAIRS

A key characteristic of many historic apartment buildings is the arrangement of individual outdoor space as private balconies. These take many forms, but are often designed as a principal architectural element of the building, either as a rising tier of balconies supported by a Classical Order of columns, or as tiers of individual balconies behind a full height colonnade.

In other instances, the balconies may be designed as a vertical or alternating sequence of individual projection/s, punctuating the primary and secondary facades as a major element of the architectural composition. In a few cases, they combine to create a continuous linear horizontal outdoor space. Larger, early double-loaded corridor apartment buildings often provide few or no external balconies on the primary facade.

While the design of a new multifamily building is less likely to frame apartment balcony space using such a thorough expression of architectural language and style, balconies remain a significant design feature of both the primary and other facades in creating residential amenity. Balcony form and design will provide creative ways to complement the composition and the visual emphasis of the building facades, and to integrate the design and scale of a new building with its context.
The entrance porch, stoop or portico is a characteristic of most early multifamily buildings, a function of a raised first floor to light basement space, and a key design element in building scale, type or style, and composition. The entrance helps to mediate between the scale and form of single family and multifamily buildings. The design of a new multifamily building should similarly recognize the importance of this key architectural element in the focus, form, detailing and legibility of the primary entrance, and the differentiation it helps to provide between public and private.

In contrast, most secondary and escape stairs should remain an element that is located towards the rear of the building, and one which should not be readily visible from the public way.

**Design Objective**

The design of a new multifamily building in a historic context should recognize the importance of balcony and primary entrance features in achieving a compatible scale and character.

*Porch and balcony design and detailing can play a major role in the articulation of the facade, and in defining private outdoor space.*

*Column arrangement and design becomes a medium and a focus of stylistic definition.*

*Balconies help to articulate the facade and to animate the corner and retail entrance below.*
12.64 Balconies, encouraged as individual semi-public outdoor spaces, should be designed as an integral part of the architectural composition and language of the building.

- Use projecting and/or recessed balcony forms to complement and embellish the design composition of the facades, and to establish visual emphasis and architectural accent.
- Use a balcony or a balcony arrangement to echo and accentuate the fenestration pattern of the building.
- Design balcony forms to be transparent or semi-transparent, using railings and/or glass to avoid solid balcony enclosures.
- Select and design balcony materials and details as a distinct enrichment of the building facade/s.

12.65 An entrance porch, stoop or portico should be designed as a principal design focus of the composition of the facade.

- Design for greater stature to enhance visual focus, presence and emphasis.
- Design for a distinct identity, using different wall planes, materials, details, texture and color.
- Consider designing the name of the apartment building into the facade or the porch/stoop.

12.66 A secondary or escape stairway should be planned and designed as an integral part of the overall architecture of the building, and positioned at or towards the rear of the building.
BUILDING MATERIALS, WINDOWS, ELEMENTS & DETAILING

Architectural detailing, window design and building materials combine to create the intricate visual interest inherent in the design of a facade. Much of the character of a building resides with the variety and composition of architectural details, the design of the windows and palette of materials, and is used with great effect in the spectrum of historic apartment and smaller multifamily buildings across the city.

This combination of design detail, texture, color and visual interest helps to define the architectural individuality of the building, and is usually an effective combination to enhance the compatibility of the design and scale of the building.

The functional role of many traditional design elements and details should be borne in mind when designing a new multifamily building. A cornice, projecting coping or depth of eaves for example, inspired by traditional architectural language, provides embellishment of the design and helps to shelter the facades of the building. While the transience of architectural fashion may continually change, the essential functional role of many architectural features remains.
MATERIALS

Successful, creative, contemporary design in a historic context does not rely upon the use of new or more recent materials, innovative or otherwise. Many of the most effective and compatible recent buildings make imaginative and creative use of a palette of traditional building materials.

The choice of materials, and the way they are used, can help to reflect the sense of human scale inherent in a historic context. The individual brick, or block of stone, can be instinctively perceived as the dimensional unit with which we are all familiar. Brickwork and natural stonework, which can be chosen or finished to exhibit infinite variations in color and/or surface texture, help to accentuate a sense of place, human scale, design character and individuality of the building. The pattern or “bond” in the construction of masonry materials is also an integral aspect of this design detail, simultaneously providing a spectrum of architectural richness, and an affinity with the older buildings in any given setting.

In the context of historic three dimensional form, the additional dimension of time is something we inherently read and interpret in a historic neighborhood. The materials play a role in creating a greater sense of permanence for a new building in a historic setting, helping to establish and express its age and maturity.

Materials should have the capacity to weather gradually, and in so doing, to mature over time, thus contributing in architectural terms a patina of age, and a sense of the historic evolution of the building and setting. Materials should be chosen for their durability and quality, and detailed to ensure that a new building endures, and can gradually mellow into the ‘historical narrative’ of the district.
A new multifamily building should be a significant addition to the urban quality and character of the city, and consequently should be designed as a ‘permanent’ or long term element of that context, drawing inspiration from the best of the city’s established architectural character. The palette of building materials, which is characteristic of the immediate setting and the historic district as a whole, provides a spectrum of essential design reference in designing a compatible new multifamily building.

**Design Objective**

The design of a new multifamily building should recognize and reflect the palette of building materials which characterize the historic district, and should help to enrich the visual character of the setting, in creating a sense of human scale and historical sequence.

12.67 **Building materials that contribute to the traditional sense of human scale and the visual interest of the historic setting and neighborhood should be used.**

- This helps to complement and reinforce the palette of materials of the neighborhood and the sense of visual continuity in the district.
- The choice of materials, their texture and color, their pattern or bond, joint profile and color, will be important characteristics of the design.
- Creative design, based on analysis of the context, will be invaluable in these respects.

Creative attention to the detailed design of windows, brickwork and decorative panels identify one of the city’s most impressive historic apartment buildings.

Decorative contemporary brickwork helps to integrate a new apartment building within its historic setting while anchoring projecting balconies.
12.68 Building materials that will help to reinforce the sense of visual affinity and continuity between old and new in the historic setting should be used.

- Use external materials of the quality, durability and character found within the historic district.

12.69 Design with materials which provide a solid masonry character for lower floors and for the most public facades of the building. Consider the following:

- Use brick and/or natural stone, in preference to less proven alternatives for these areas.
- Limit panel materials to upper levels and less public facades.
- Where panel materials are considered, use high quality architectural paneling with a proven record of durability in the regional climate.
- Synthetic materials, including synthetic stucco, should be avoided on grounds of limited durability and longevity, and weathering characteristics.

12.70 Materials should have a proven durability for the regional climate, as well as the situation and aspect of the building.

- Avoid materials which merely create the superficial appearance of authentic, durable materials.
- The weathering characteristics of materials become important as the building ages, in that they should compliment rather than detract from the building and historic setting as they weather and mature.
- New materials, which have a proven track record of durability in the regional climatic conditions, may be considered.
Chapter 12. New Construction in Historic Districts

WINNDOWS

Of the many architectural characteristics of the design of a building façade, the design of the windows is perhaps the most important. Window openings provide a considerable degree of modeling and detail to the facades, with the window reveals creating a distinctive recess of the plane of the reflective window from the plane and texture of the wall.

Window reveals enhance the sense of visual strength of the facade, conveying an impression of the depth, solidity and permanence of the wall. The difference in plane between window and wall surface also creates distinctive light, shadow and reflection which will change with the time of day, and also with the season. This recess also helps to shelter the window and the window frame, and helps to moderate solar gain.

Window openings and design are the focus of finer frame detailing and craftsmanship, in the past using classical frame profiles, decorative subdivided or leaded lights and often stained glass. The form, the subdivision and the profiles of the window framing, their finishes and colors, play a major role in creating the modeling, detailing, quality and richness, and consequently the perceived scale of the building.

Design Objective

The design of a new multifamily building should include window design subdivision, profiles, materials, finishes and details which ensure that the windows play their characteristic positive role in defining the proportion and character of the building and its contribution to the historic context.
12.71 **Windows should be designed to be in scale with those characteristic of the building and the historic setting.**

- Excessive window scale in a new building, whether vertical or horizontal, will adversely affect the sense of human scale and affinity with buildings in the district.
- Subdivide a larger window area to form a group or pattern of windows creating more appropriate proportions, dimensions and scale.

12.72 **Windows with vertical proportion and emphasis are encouraged.**

- A vertical proportion is likely to have greater design affinity with the historic context.
- It helps to create a stronger vertical emphasis which can be valuable integrating the design of a larger scale building within its context.
- See also the discussion of the character of the relevant historic district and architectural styles (PART I).

*The design of the facade can effectively employ a hierarchy of windows reducing in stature on the upper floors, and establishing the actual or symbolic importance of levels and spaces.*

*Window proportion and detailing are accentuated by rising, projecting balcony tiers, and their decorative structural ironwork.*

*Contrasting fenestration providing 'hole in the wall' definition in one facade, and framed by decorative sculptural brickwork in others.*
12.73 **Window reveals should be a characteristic of masonry and most public facades.**

- These help to express the character of the facade modeling and materials.
- Window reveals will enhance the degree to which the building integrates with its historic setting.
- A reveal should be recessed into the primary plane of the wall, and not achieved by applying window trim to the façade.
- This helps to avoid the impression of superficiality which can be inherent in some more recent construction, e.g. with applied details like window trim and surrounds.
- A hierarchy of window reveals can effectively complement the composition of the fenestration and facades.

12.74 **Windows and doors should be framed in materials that appear similar in scale, proportion and character to those used traditionally in the neighborhood.**

- Frame profiles should project from the plane of the glass creating a distinct hierarchy of secondary modeling and detail for the window opening and the composition of the facade.
- Durable frame construction and materials should be used.
- Frame finish should be of durable architectural quality, chosen to compliment the building design.
- Vinyl should be avoided as a non-durable material in the regional climate.
- Dark or reflective glass should be avoided.
- See also the rehabilitation section on windows (PART II, Ch.3) as well as the discussions of specific historic districts (PART III) and relevant architectural styles (PART I).
ARCHITECTURAL ELEMENTS & DETAILS

The detailing of a facade has a major role in conveying a sense of human scale and in creating an affinity with the character of the context and historic district. The existing historic fabric of single family and apartment buildings is rich in detailed embellishment, sometimes obvious, sometimes subtle, but always there.

This is a particular characteristic of historic apartment and smaller multifamily buildings, and one which helps to draw attention and visual appreciation away from the building mass and scale, to focus on more intricate composition details and textures at first, or perhaps second, glance.

Sensitively integrating a new multifamily building in a historic setting will depend upon attention to this finer grain level of the design, especially so where there is a notable increase in scale. Creative interpretation of traditional elements and details should enhance the individuality of the character of the building.

**Design Objective**

The design of a new multifamily building should reflect the rich architectural character and visual qualities of buildings of this type within the district.
12.75 Building elements and details should reflect the scale, size, depth and profiles of those found historically within the district.

- These include windows, doors, porches, balconies, eaves, and their associated decorative composition, supports and/or details.

12.76 Where used, ornamental elements, ranging from brackets to porches, should be in scale with similar historic features.

- The scale, proportion and profiles of elements, such as brackets or window trim, should be functional as well as decorative.

12.77 Creative interpretations of traditional details are encouraged.

- New designs for window moldings and door surrounds, for example, can create visual interest and affinity with the context, while conveying the relative age of the building.

- The traditional and characteristic use of awnings and canopies should be considered as an opportunity for creative design which can reinforce the fenestration pattern and architectural detail, while being a sustainable shading asset in reducing energy consumption. See also PART IV on Sustainable Design.
SIGNS - PRINCIPAL & OTHER USES

Signs and other graphics are a characteristic of most multifamily buildings, whether they are solely residential or include other commercial uses such as a ground floor café or restaurant.

The design of signs should reflect the nature of the use they identify. They should be creative and avoid significant illumination, communicating in an effective yet subtle way. Individual lettering and/or graphic symbolism should integrate effectively with the architecture of the building, and therefore should be an early consideration in the design process.

The compatible design and expression of signs within a historic district will invariably be more subtle and restrained than the code maximum.

Design Objective

Signs for a new multifamily building, and for any non-residential use associated with it, should compliment the building and setting in a subtle and creative way, as a further architectural detail.

12.78 Signs should be placed on the building or the site where they are traditionally located in the historic context.

12.79 Identify a non-residential use with a sign location, placement, form and design, which relates directly to the ‘storefront’ and window design.

- See also the Design Guidelines for Signs in Historic Districts in Salt Lake City.
- See the Design Guidelines for Historic Commercial Buildings and Districts in Salt Lake City.
12.80 Signs and lettering should be creatively designed to respect traditional sign scales and forms.

12.81 Signs for the primary and any secondary use should be designed as an integral part of the architecture of the façade.

- Lettering or graphic motif dimensions should be limited to the maximum required to identify the building and any other use/s.
- Creativity and subtlety are objectives of the design of any sign for a new multifamily building in a historic setting.

12.82 Signs should take the form of individual lettering or graphic motif with no, or minimal, illumination.

12.83 Any form of illumination should relate discretely to the sign lettering, and avoid any overstated visual impact upon any residential use or historic setting.

- The light source should not be visible.
- Internally illuminated lettering and sign boxes should be avoided.
- Internally illuminated lettering using a transparent of translucent letter face or returns should be avoided.
- Where illumination might be appropriate, it should be external and concealed, or in ‘halo’ form.
- Banner or canopy signs are not characteristic and will not be appropriate.
12.84 Sign materials should be durable and of architectural quality to integrate with the building design.

12.85 Power supply services and associated fittings should be concealed and not be readily visible on the exterior of the building.

12.86 Refer to the City’s Design Guidelines for Signs in Historic Districts for more detailed and extensive advice.

A considered canopy sign.

Sign lettering and motif are both used here as decorative detail to embellish the facade.

Creative, subtle and complimentary use of design, materials and textures.
III
HISTORIC DISTRICTS

Apartment
&
Multifamily
Development
PART III  Historic Districts

APARTMENT & MULTIFAMILY DEVELOPMENT

CH. 13 THE AVENUES  13 : 1 - 6
CH. 14 CAPITOL HILL  14 : 1 - 6
CH. 15 CENTRAL CITY  15 : 1 - 4
CH. 16 SOUTH TEMPLE  16 : 1 - 8
CH. 17 UNIVERSITY  17 : 1 - 2
CH. 18 WESTMORELAND PLACE  18 : 1 - 2

The following chapters complement, and should be read in conjunction with, the Historic District chapters in A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City which can be accessed directly from the links in each chapter.
Ch.13 THE AVENUES

A HISTORY OF APARTMENT AND MULTI-FAMILY DEVELOPMENT

The following background on the historical development of apartment and other multifamily buildings in The Avenues draws directly from the reconnaissance level surveys of the district in 2008 and 2013. (Broschinsky)

Statement of Significance

The Avenues Historic District is architecturally significant for its richness of architectural character and range of architectural diversity. Although the area functioned primarily as a middle-class suburb for the downtown commercial district, the Avenues Historic District represents contributing architectural types and styles built over more than a century. The district features vernacular adobe dwellings built by the first residents, as well as palatial mansions designed for the city’s titans of industry and commerce by Salt Lake’s most notable architects. Throughout the district are small tracts of Victorian Eclectic cottages, built mostly by small-scale speculative developers for the city’s professionals, artisans and laborers. The neighborhood includes an impressive collection of late-nineteenth and early-twentieth century duplexes and walk-up apartment blocks for the middle and working class, built along streetcar lines for easy access to the downtown business district.

Victorian Urbanization Period, 1880-1908

While the majority of these resources are single-family dwellings, this period also represents the first extant examples of multifamily housing stock, commercial and institutional buildings.

Multiple-family housing began to appear in the district in the early 1890s. According to one report, in April of 1888, there was a “scarcity of rentable houses and a great demand for them,” particularly four-room cottages for small families. Row houses, small apartment buildings (mostly four-unit blocks) and double houses (i.e. duplexes) were built throughout the district during this period. A few multi-story walk-up apartment blocks were built toward the end of this period.

Forty of the contributing buildings of this period are double house/duplexes. The majority are the Double House A or Double C House types as described by Carter and Goss (PART I Section 4). There are twenty-four examples of other multifamily housing types, including four-unit block, row houses, walk-ups, and a few double-loaded corridors. The larger buildings are between two to four stories, built of brick, with most exhibiting elements of the Victorian Eclectic style. The large-scale blocks are found closer to the downtown business district. The Caithness Apartments, built in 1908, are an early example of the Prairie School-style.

Caithness Apartments
Bungalow and Period Revival Cottage
Infill Period, 1909-1931

The need for housing stock close to the city during this period is indicated by the relatively high number of multi-housing units constructed between 1910 and 1931. By the time Salt Lake City passed its first zoning ordinance in 1927, this increased density was reflected in zoning that allowed for multifamily dwellings and commercial uses on the most trafficked intersections.

Most of the apartment blocks built during this period were three to four-story walk-ups and double-loaded corridors decorated in popular styles of the period, for example, the Hillcrest Apartments on First Avenue (Neo-Classical, 1915), or the Piva-Quincy-Ontario blocks at 156-162 “I” Street (Prairie School, 1917). By the late 1920s, the period revival cottage duplex was the most popular multi-housing property type in the Avenues.

The fifty-seven multifamily residences from this period are divided more evenly than the previous period, between twenty-three double house/duplexes and thirty-four larger apartment blocks. The duplexes are mostly period cottage styles from the mid to late 1920s and many are located at the corner of blocks. The apartment buildings, in particular the double-loaded corridors, include an impressive range of styles such as Neo-Classical, Prairie School, Mission, Spanish Colonial and Jacobethan Revival.

There are a few historic carports and garages that are associated with both large and small multifamily buildings.
Depression and War Domestic Adaptation Period, 1932-1946

During the 1930s, the period-revival style continued to be popular for individual residences, duplexes and small apartment blocks. There is a lot of variation in the individual styles. Although rare, the handful of Art Moderne buildings, such as the fourplex at 604 First Avenue built in 1936-1937, are exceptional examples of the style.

There are a number of apartment blocks built in this period, mostly eclectic in type and style, and therefore difficult to categorize as a whole. It is significant to note the relatively high number of multi-car garages associated with apartment blocks from this period.

Post-War Infill, Multi-Family Conversion and Apartment Block Period, 1947-1965

Prompted in part by a post-war housing shortage, numerous apartment blocks were constructed in the late 1950s and early 1960s. The building type depended on the amount of available land. In some cases, an undivided lot or several contiguous lots were purchased, the existing houses razed and a two or three story four-unit block with a central interior entrance was built (mostly 1950s). Where only one or two narrow lots were available, a boxcar type apartment block was built. Boxcar apartments are typically two-story narrow buildings with exterior stairs/doors and the narrow end facing the street (mostly 1960s).
There are 124 (7 percent) contributing resources built during this 1945 to 1967 period. As with the previous period, there were few vacant lots in the area and most new construction followed demolitions of older homes. The remaining resources are divided fairly evenly between single-family and multifamily residences. There is a bumpy in construction in the late 1940s, which slows down through the 1950s. A second rise in construction occurs at the end of the period in the 1960s with an upsurge in the construction of apartment blocks.

There is a noticeable increase in the number of multifamily housing units built during this period. In the 1950s, the trend was toward two-story four-unit blocks with a wide facade, a central entrance and an interior corridor. The boxcar apartment block first appears in 1953, but increased quickly in popularity to a peak in the mid-1960s. There were twenty seven built in the district between 1953 and 1963. The boxcar, with its perpendicular orientation, could be easily adapted to the narrow lots of the Avenues. The most common examples are two-stories with exterior entrances facing the driveway.

Low-slope hipped roofs were popular on the apartment blocks of the 1950s, giving them a Post-War style. However, by the late 1950s, the trend was toward flat roofs and more modern styles. By the early 1960s, decorative concrete block was as popular as brick for the construction of the apartment block. There are several good examples of the Post-War Modern style built during this period.

Decline & High Density Development, 1966-77

Construction slowed dramatically in the Avenues after 1965. The majority of buildings constructed during this period were apartment blocks, including several high-rise structures between four and eight stories. These high-density buildings have been decried as “inconsistent with the scale of the surrounding buildings. The emergence of these over-scale buildings and the demolitions that preceded them was part of the impetus for the preservation and revitalization movement that began in the late 1970s.

This period of high-density development is represented by 53 resources (3 percent), all non-contributing. Most were mid to large-scale apartment blocks with very few single-family dwellings. This period is remarkable as the peak period of conversion of older houses to multiple apartment units.

Broschinsky, Korral Avenues Historic District RL Survey 2007-8
Broschinsky, Korral Avenues Historic District RL Survey 2013

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.13 The Avenues

1st Avenue
Ch. 14  CAPITOL HILL

A HISTORY OF APARTMENT AND MULTI-FAMILY DEVELOPMENT

The following background on the historical development of apartment and other multifamily buildings in Capitol Hill draws directly from the reconnaissance level survey of the district in 2006.

(Broschinsky)

Victorian Urbanization Period, 1890-1911

By the time of the 1900 census, approximately a third of the households were occupied by renters. Multiple family housing began to appear in the district in the early 1890s. According to one report, in April of 1888, there was a “scarcity of rentable houses and a great demand for them,” particularly four-room cottages for small families. Row houses, small apartment buildings (mostly four-unit blocks) and double houses (i.e., duplexes) were built throughout the district during this period. Examples include, 106 W Clinton Avenue (built 1903), 424 N Quince Street (built circa 1907), 230-232 W 300 North (built circa 1900) and 415-417 Wall Street (built 1909).

The 2006 survey identified 349 resources from this period. This accounts for 46 percent of contributing resources. While the majority of these resources are single-family dwellings, this period also represents a sharp increase in multifamily housing stock, commercial and institutional buildings.

Residential Infill, Apartment Blocks and Apartment-Conversion Era, 1912-1929

The 1920 census enumeration indicates that the proportion of rental units in the Capitol Hill neighborhoods had increased, nearly outnumbering owner occupied households. However, the neighborhood was relatively stable.

An important trend which began in the 1920s was the conversion of single-family dwellings to multi-family housing. Census records, city directories, and building permits illustrate that this mainly occurred in the form of basement apartments in older houses. The need for housing stock close to the city during this period is indicated by the relatively high-number of multi-housing units constructed during this period. Several double house bungalows were also constructed during this period. The best examples are located at 265-267 West 400 North, 324-326 West 600 North, 263-265 West Bishop Place and 708-710 North 300 West, all built of brick in the 1920s.

Several apartment complexes were also built during this period. The Lorna Apartments, a six-unit walkup located at 776 North 300 West and built in 1913, is one of the best preserved. The Hollandia Apartments, an eight-unit complex located at 376 North 300 West, was built in 1925. The twin Kesler Apartment blocks at 264 and 258 N State Street, built during the construction of the capitol, commanded a view of both the capitol grounds to the north and the cityscape to the south. The Kensington Apartments, a multi-story apartment block with an interior court, was built in 1916 at the corner of 200 North and Main, a short walk from the downtown commercial district. The first zoning ordinances were implemented in Salt Lake City in 1927, and at the time, the Capitol Hill area was tending toward higher densities and more rental units.
According to the 1920 census, the railroad was still the most important employer in the area. For example, all six household heads living in the Lorna Apartments worked for the railroads. However, there was a sense of decline because the railroads attracted fewer immigrants as the economy slowed. A number of automobile related jobs were found in the 1920 census. There were four repairmen, two salesman, and a dozen truck drivers, mostly for the laundry and candy company.

The historical development of the Capitol Hill Neighborhoods provided a mix of housing stock. Long-time residents, professionals and business owners lived in the larger homes, while numerous office and service workers, lived in the older homes, cottages, basement apartments and apartment blocks.

There are 155 resources from this period. The resources can be divided into four main categories: 83 bungalows, 21 traditional and 8 transitional period-revival cottages, 30 duplexes and apartment blocks, and 21 miscellaneous types.

Nineteen of the multifamily residences from this period are double houses, scattered throughout the district with highly individualized architecture. During this period, the Double House Type with a pitched roof was slightly more popular than the flat-roof Type C. There are no Type B examples from this period. Most stylistically represent the Victorian or Bungalow era, but there are also two examples of the Period Revival double house. Four-unit blocks, walk-ups, and other apartment types are also represented. (See PART I Section 4)

Adapting American Domestic Architecture Period, 1930-1961

The Capitol Hill Neighborhoods did not experience a precipitous economic decline during the depression years. The ever-present railroad and related manufacturing to the west, employment opportunities in the downtown area, and property ownership rates (both owner-occupied and local landlords) account for much of the stability. The types of employment noted on the 1930 census are very similar to the previous decade with a slight rise in the service industry sector.

The ratio of rental units versus owner-occupied dwellings was also very similar. However, there is a movement toward converting whole residences to rental housing, as opposed to the basement apartments of the previous period.

In general, the houses of the early part of the period are smaller than in previous period. Houses built in the 1930s and 1940s are generally found as infill. During the 1930s, the period-revival style continued to be popular for individual residences, duplexes and small apartment blocks. There is a lot of variation in the individual styles.

Salt Lake’s suburban boom of the 1950s had little effect on the Capitol Hill neighborhoods. Most of the vacant lots had been built upon. On the slopes of the Marmalade district, ranch-style houses and mid-size apartment blocks were squeezed on a few vacant lots, and on lots where older homes were torn down.
Historic Districts - Apartment and Multi-family Development

The flatter land and current zoning practices also encouraged multifamily development. For example, on the southwest corner of 300 North and 200 West, a two-story adobe house built by the first pioneer homesteader in 1848 was torn down in 1951 and four duplexes built in its place. These stacked duplexes have separate exterior entrances for each unit, a departure from the early twentieth-century type that had an interior stair to the upper unit. Several four to eight-unit apartment blocks were built scattered through the Capitol Hill area. Some have Minimal Traditional details, such as 227 N Center Street (1951). A later example at 510 N Main Street (1957) is in the Post-war Modern style.

Approximately twenty percent of resources (154) are from this period. The contributing resources vary greatly from period cottages to modernistic residences and apartment blocks.

There is a noticeable increase in the number of multi-family units built during this period, particularly in the flatter West Capitol Hill Neighborhood. Several groups of stacked duplexes with exterior entrances (circa early 1950s) were built in the 200 and 300 West area. Some were built as infill, but with an increase in demolition during this period, many were built on lots previously occupied by older homes.

In the 1950s, the average number of units in an apartment block rose from four to eight. During this period, the broader ranch-style walk-up apartment blocks appeared on several corner lots within the district. On a few of the narrower lots, boxcar-type apartments were built with the narrow end to the street and exterior entrances. These apartment blocks range in style from Minimal Traditional to Modernist. In 1961, the first high-rise, the Panorama Apartments, was built on Arsenal Hill.
Decline & High-Density Development Period, 1962-1984

In the two decades between 1962 and 1984, fewer than ten single-family residences were constructed in the Capitol Hill neighborhoods. Most of the construction was concentrated in larger apartment complexes. Eleven condominium complexes were built in the area.

Several large apartment complexes were built in the inner blocks between 200 and 300 West. The largest of these were the Americana with 100 units built in 1970, and the Pioneer Apartments with 250 units built in 1982.

While the Marmalade Neighborhood was removed from the commercial and light industrial encroachment occurring on the west side of the district, high-density zoning at the south end of the district resulted in the construction of high-rise apartments and condominiums that altered the character of the historic district. The first was the seven-story Panorama Apartments built in 1961 at the southwest corner of the Arsenal Hill Neighborhood. The largest complex was the two thirteen-story towers of Zion’s Summit, built in 1973. The Zion’s Summit complex dwarfed the surrounding residential buildings and blocked most of the view shed from the Capitol Hill neighborhoods to the downtown business district and beyond. Neighborhood protests against these structures did not prove effective.

Over-scale apartment projects, rising gas prices, and increased interest in historic preservation in the 1970s, prompted city officials and others to take a look at the unique architectural resources of the Capitol Hill Neighborhoods.

This period of high-density development is represented by 71 resources. The majority of these resources (51) are multifamily buildings, including many large complexes of 50 to 100 units. These larger complexes did much to alter the historic character of the district. On Arsenal Hill, several high-rise structures visually isolated the historic Marmalade district from the rest of the city. In West Capitol Hill, several inner-block historic residential courts were destroyed for lower, broader complexes.

These large complexes were more automobile oriented and have made the neighborhood less friendly for pedestrians. Smaller apartments were shoe-horned into the district. A group of stacked duplexes were built at the northeast corner of the district.
Design Review & Renewal Period, 1985-2006

Public policies and market forces have contributed to the general renewal in the Capitol Hill Historic District. Much of the neighborhoods were downzoned in the mid-1980s and again in 1995 during a city-wide review of zoning practices. In addition, long commute times on crowded freeways have helped entice higher-income families back to the city center.

There have been a few apartment/condominium projects in the area, but for the most part the over-scale and high-rise intrusions have been avoided. One early example is the Capitol Heights Condominiums at the corner of Zane and Wall Streets, built in 1983. A more recent example is the Almond Street Townhouses at 269-289 N Almond Street.

Types

There are several four-unit blocks, as described by Carter and Goss, in the district. During the 1950s, a new duplex type was introduced: a stacked duplex with exterior entrances. There are numerous examples in the Capitol Hill Historic District. The building permit cards indicate that several homes that appear as single-family dwelling were actually built with basement apartments. The Capitol Hill area includes several examples of two to three-story apartment blocks that feature interior entrances similar to early twentieth-century walk-ups, but much broader, probably a nod to the popularity of the ranch house during this period.

Ninety-six percent of contributing resources (or 723) are residential. Seventy-seven percent of those (580) were single-family dwellings. Nineteen percent (140) were multiple family dwellings, primarily duplexes.

See also: A Preservation Handbook for Historic Residential Buildings & Districts in Salt Lake City, Ch.14 Capitol Hill

N Main Street

N Main Street
Ch. 15  CENTRAL CITY

A HISTORY OF APARTMENT AND MULTI-FAMILY DEVELOPMENT

The following background on the historical development of apartment and other multifamily buildings in Central City draws directly from the reconnaissance level survey of the district in 2013. (Certus 2013)

Transition (1870-1899)

Multifamily housing increased in number in the area as population density increased along with the easy transit access to employment in downtown Salt Lake City and elsewhere in the valley. Residential buildings became more diversified, larger, and more permanent during this period.

Ninety-three buildings estimated to date to this period are present in the Central City district. As with all periods, the building stock of this period is dominated by residential properties, and specifically by single family dwellings. The walk-up apartments from this period are primarily located in the northern portion of the district.

Mature Community (1900-1922)

On one hand, single-family housing construction boomed as more residents flooded the neighborhood. Larger lots were subdivided and platted subdivisions were built out. Residential courts consisting of multiple attached single-family dwellings also became popular in the area, as did residential courts of small, detached bungalows.

On the other hand, a slow exodus of single-family homeowners also began during this period. This is evidenced, in part, by the increase in the number of single-family dwellings being used as rental properties (Giraud 2001).

Construction of multifamily housing, particularly in the form of multi-story apartment buildings, also increased during this period. These apartments, along with the residential courts, served to increase the population density of the neighborhood.

True expressions of Period Revival styles can be found in the Central City district on multifamily dwellings, particularly walk-up apartments, or in other types of multifamily units, such as hotel courts. The Neoclassical style apartments at 68 South 500 East and the Spanish Colonial Revival style hotel court at 614 East 600 South—designed by architect A.O. Treganza—are good examples of the application of Period Revival styles to buildings in the district. Walk-up apartments dominate the apartment forms of the period, though an occasional early double-loaded corridor apartment, such as the North Park apartments at 577 South 500 East, can also be found in the area.

Cornell Apartments
Depression and Decline (1923-55)

In Central City and surrounding neighborhoods, such as the Avenues and the Bryant neighborhood, numerous single-family homes were renovated to contain multiple apartments or turned into boarding houses (Giraud 2001). Such apartments and boarding houses became increasingly popular during the 1930s, while the city writhed in the throes of the Great Depression. Stand-alone, multi-story apartment building construction also increased dramatically during this period, particularly during the 1920s, with at least 10 major apartment buildings, and many smaller ones, being constructed in the Central City survey area alone.

During the early post-war period, several of the older homes in the neighborhood were demolished to make way for new single-family and multi-family dwellings.

Among the residential properties, single family dwellings dominate the building stock of the early part of the period while multi-family apartment complexes dominate the residential construction during the latter part of the period.

Many multi-family dwellings were constructed in the Central City neighborhood during this period. Most are apartment complexes, though a few duplexes and triplexes are also present. In the early part of the period double-loaded corridor apartments and corner entrance apartments were the most common form used, and these properties often exhibit Period Revival styles. Examples include the Colonial Revival style Armista apartments at 555 East 100 South, a second Colonial Revival complex at 125 South 600 East, and the English Tudor Revival style Park Manor apartments at 841 South 500 East. Later in this period, other (undefined) apartment forms appeared in the area, and these took on the stylistic designs of the 1940s and early 1950s—Minimal Traditional and Early Ranch styles. Examples of such properties include Minimal Traditional style apartments at 607 East 100 South and 633 East 200 South, and the Early Ranch style apartments at 511 East 700 South.
Erosion of Residential Character
(1956 -1995)

The trend away from owner-occupancy toward rental housing continued in the Central City neighborhood during the 1960s, 1970s, and 1980s. An increasing number of historical single-family dwellings, particularly the larger homes in the northern part of the neighborhood, were subdivided into multiple apartments and converted to rental properties. Redevelopment and affordable housing projects saw the demolition of numerous historical residences to make way for new apartment buildings.

Seventy-eight buildings documented during the Central City survey are estimated to date to this period. The majority of these buildings are commercial structures and multifamily apartment units, many constructed as part of redevelopment and affordable housing projects. Most of the new construction during this period occurred in the central and southern portions of the neighborhood, south of 300 South. In several cases, such as that of four houses along 400 South and at least three houses along 300 South, the new construction resulted in the demolition of historical buildings.

Residential properties in the Central City district from this period are almost exclusively multifamily dwellings. No single family dwellings were identified. The multifamily dwellings comprise apartment complexes exhibiting Ranch/Rambler and Post World War II style during the early part of the period and general Late 20th Century and Mansard styles in the latter part of the period, after 1970. Unlike the apartment complexes of the late 1800s and early 1900s, the complexes of this period typically incorporate off-street parking areas, including carports and similar vehicle shelters. Examples of ca. 1960s Ranch/Rambler style complexes can be seen at 564 East 600 South and 615 East 700 South.
Preservation Vs Progress (1996-2013)

New housing construction has also occurred in the area, primarily in the form of multifamily apartment and condominium complexes built upon lots once occupied either by historical single-family dwellings, such as the case of Vernier Court (335 South) where eight Victorian-era residences were demolished for the construction of a new apartment/condominium complex. However, a small number of new single-family dwellings and attached single-family residential courts (primarily comprised of condominiums) have also appeared in the area in recent years, primarily in the northern portion of the neighborhood.

Thirty buildings documented during the Central City survey are estimated to date to this period. Nearly all of the buildings constructed during this period are commercial structures, though a few are residential properties. Of the residential properties constructed during the period, all but two are multi-family dwellings comprising multi-story apartment courts or condominium courts.

The multifamily dwellings from this period include modern revivals of the historical U-plan concept as well as simple “block” apartments. One example of a U-plan development can be found at 335-343 South 500 East, where a row of Victorian era single family homes along Vernier Court were demolished to make way for the Emigration Court development. Other new developments include the townhouse/condominium tract at 625 East 200 South.

Architectural Types and Styles

As it has been throughout its history, the pre-modern era building stock (i.e., built during or before 1968) of the Central City district remains primarily residential. Of the 551 historical primary buildings in the district, 93% were built as, and are still used as, residential properties. Of these, 75% were constructed as single family dwellings, and 18% were constructed as multifamily dwellings—mostly duplexes or apartments. Among the buildings constructed as single family dwellings, an estimated 2% have been converted to multifamily units.

Certus Environmental Solutions Central City RL Survey 2013

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.15 Central City
Ch.16 SOUTH TEMPLE

A HISTORY OF APARTMENT AND MULTI-FAMILY DEVELOPMENT

The following background on the historical development of apartment and other multifamily buildings in South Temple draws directly from the reconnaissance level survey of the district in 2007 and 2013. (Lufkin 2013)

Statement of Significance Summary

The South Temple Historic District was designated as locally significant for its collection of houses and other buildings built by prominent architects in the finest styles for the political, religious and commercial leaders of nineteenth and early twentieth century Utah when it was nominated to the National Register of Historic Places in 1978. The district continues to be locally significant for its association with the people who influenced the history and early development of the State of Utah. It also remains significant for its collection of mansions, elegant houses, social clubs and apartment blocks, many of which are the epitome of their style, built by the major architects of Utah. The latest survey amendment extends the period of significance from 1928 to 1964 to include the multifamily residential and commercial buildings constructed during this era. The Bonneville Tower, the first apartment tower and a major building on the street was constructed in 1964, and the period of significance is extended to 1964 to include this building.

The street was built out by the 1920s, and construction since that time, was infill or replacement of existing buildings. Municipal zoning changes strongly influenced the twentieth century development of South Temple allowing commercial and multi-family usage of the existing structures as well as demolitions and new construction for the new uses. South Temple remains an exceptional street in Utah with its buildings of architectural and historical significance and is still a preferred address in Salt Lake City. The South Temple Historic District continues to contribute significantly to the historic resources of Salt Lake City.

Historically based period revival styles were fashionable in Utah from 1890 to as late as 1940. While small period revival cottages were the most popular house type in Utah in the 1920s and 1930s, the period revival style multifamily buildings from this era include English Tudor apartments, an English cottage duplex house, a Spanish Colonial Revival duplex, and a Colonial Revival apartment building. Bernard O. Mecklenburg, a prominent Utah architect who designed other significant hotels, churches and apartment houses on South Temple in earlier periods, built the Colonial Revival Federal Heights apartments at 1321 in 1929.

The Minimal Traditional (World War II-era) style began to appear in the 1930s and was the major style in Utah in the 1940s and 1950s for residential buildings. An early example of the style is the 1938 red brick duplex on Haxton Place.

Bellona Apartments
Architectural Styles, Types and Materials from 1928-1963

The major change on the street during the period from 1928 to 1964 was the move away from the construction of single-family dwelling units to that of multiple family dwellings and commercial buildings.

Residential construction consisted of three duplexes, six apartment buildings and one dormitory. All three duplexes were built at the start of the period in the 1930s. The first, 1204 E South Temple, was built in 1934 in a stucco-covered vernacular Spanish Colonial Revival style in a single story. Two brick duplexes were built on the corner entrances of Haxton Place in 1938, both with their garages underneath the living space. The striated brick English Cottage style example at 926 E South Temple/4 Haxton Place is on the south side, across the street from the striated brick Early Ranch/Minimal Traditional style duplex at 3/7 Haxton Place.

Three apartment buildings were constructed before the United States involvement in World War II began in 1941: the Prairie School/Modern style brick and cast concrete Commodore Apartments at 1107 E South Temple in 1930, the striated brick Federal Heights Apartments at 1321 E South Temple in 1930, and the brick English Tudor style Barbara Worth apartments at 326 E South Temple in 1932.

In the postwar period, three modern apartment buildings were built; the red brick Post War Colonial Revival style building at 1007 E South Temple in 1947, the simple World War II era Minimal Traditional style striated brick building at 848 in 1951, and the Bonneville Tower with 115 units on 15 floors, the pioneer apartment tower on the street at 777 E. South Temple in 1964.

The era from 1965-2013 is outside of the period of significance; however, a few illustrations of structures from this time have been added for informational purposes. The 337-unit Brigham Apartments at 201 E South Temple from 1997 have horizontal massing. New construction continues to fill in any previously vacant lots like the Lotus Apartment building at ca. 338 E South Temple.
The Grand Boulevard: Mansions and Churches (1890-1909)

Salt Lake City’s population more than doubled from 44,843 in 1890 to 92,777 in 1910. During this time of rapid growth, the elegant residential area expanded outward to the east along South Temple in what is now the South Temple Historic District, and as well as to the south outside of the district. In addition to mansions and churches, the increasing urban character of Salt Lake City was seen in the development of a few stylish apartment buildings as well as large single family houses.

Land use along South Temple began to change as a number of urban apartment buildings were constructed to accommodate the development of Salt Lake City as an urban center in the 1890s-1930s period, and its rapid population growth. The oldest extant apartment building in the district, the Commodore Apartments, was built in 1902 at 1107 E South Temple and remodeled in 1930. The Bungalow Apartments at 15 S 300 East followed in 1909. They are an example of a basic walk up type of apartment building.
Apartments and Club Houses (1910-1929)

Growth was slow during the early portion of this period as the economic effects of World War I from 1914-1919 retarded construction and economic growth. The introduction of the income tax law in 1913 inhibited the accumulation of the great wealth needed for the construction of South Temple mansions. The postwar 1920s economy recovered, leading to a boom in construction and the increasing use of automobiles for transportation. Many of the building permits in this era were for garages. The population of Salt Lake City increased from 92,777 in 1910 to 140,267 in 1930.

The Planning and Zoning Commission was established to determine land use policy and regulate growth for Salt Lake City in 1924. As a result of its efforts, a zoning ordinance was passed in 1927 with the stated intent “to preserve the character of the city.” At the time of the ordinance, the majority of properties along E South Temple were single family residential dwellings.

Higher residential density was encouraged, however, as no part of the street was zoned for only single family residential use. There were basically three types of zoning areas on east South Temple in this era: the least dense, one and two family residential; greater density, residential with apartments and hotels; and commercial.

The one and two family residential zone, A, covered the east end of the district and extended from M Street to Virginia Street, and from 165 feet west of 1100 East to University Street. The largest area which included one and two family residential, as well as apartments and hotels, zoned B and B2, extended on the south side from 300 South to 165’ west of 1100 East, and on the north side from A Street to M Street. Retail stores were allowed in the C, or commercial, zoning area which was found on the east and west sides of E Street. The previously single family residential quality of the street began to change as the new zoning ordinance took effect.

The increasing urbanization of Salt Lake City was evident as a number of elegant multistory apartment buildings were constructed in this era. The extant examples from this period are: the Knickerbocker at 1280 E South Temple in 1911-2, The Maryland/ Mecklenberg at 839 E South Temple in 1914, the Neoclassical style Ritz Apartments at 435 E South Temple in 1923, the Hugo at 20 S 1300 East in 1926, the Slack Winburn-designed Mayflower Apartments at 1283 E South Temple in 1927, the Piccadilly at 24 S 500 East, and the Federal Heights by Mecklenberg at 1321 E South Temple, both in 1929. The remaining construction, the majority of the buildings from this period, consisted of single family residences.
Zoning Changes and Adaptive Reuse (1930-1961)

Zoning changes described above encouraged the growth of offices, clinics, clubs, apartment buildings and nursing homes both through new construction and adaptive reuse of existing single family houses. In 1935, the zoning ordinance was amended to enlarge the area available to retail stores and offices from only E Street to along both sides of South Temple from E Street west to State Street. The 1943 Salt Lake City Master Plan defined land uses for the city and attempted to anticipate the predicted postwar surge in population for Salt Lake City. Their efforts encouraged greater density for the South Temple area although the expected population surge did not take place.

Additional zoning changes in the 1950s provided a distinct school zone for Wasatch School on R Street and its playground to the south on South Temple as well as two residential zones, R6 and R5. The R6 zone permitted greater density and different land uses by allowing residences as well as boarding houses, medical clinics and nursing homes. It extended from the eastern edge of the retail and offices zone at E and 500 East to 0 and 165 feet west of 1100 East. The remainder of the street to the east was zoned R5 to allow boarding houses and other residential uses.

A number of existing houses were adapted for reuse in accordance with the new zoning changes. In response to a concern over adaptive reuses in the R6 zone, a new category of R-7 zoning was established in 1956 to allow office buildings. This action ended up encouraging the demolition of existing houses and construction of large office, medical clinic and apartment buildings.

The population of Salt Lake City grew by almost 60,000 in this period, swelling to 189,454, the highest population for the city on record to date. New construction was primarily multifamily housing.

This period saw the construction of twenty structures or resources, or fifteen percent of the total in the district. Some residential construction did occur, mostly in the early part of the era. It consisted of one single family house, three duplexes, four apartment buildings and one dormitory.

Before World War II, two duplexes filled in the remaining lots on Haxton Place in 1938 at 3-7 Haxton Place and the corner of 4 Haxton Place and 926 E South Temple. Another single story duplex went up to the east at 1204 E South Temple in 1934.

There were two apartment buildings constructed before the World War II began in 1941: the Prairie School Commodore Apartments at 1107 E South Temple in 1930, and the English Tudor style Barbara Worth apartments at 326 E South Temple in 1932.

The last single family house was a Colonial Revival at 23 Virginia Street in 1938. In the postwar period two modern apartment buildings were built at 1007 E South Temple in 1947, and 848 in 1951.

Holy Cross Hospital built four-stories of dormitory housing for their nurses, the Moreau Building, in 1949 at 1002 E South Temple. The liberal interpretation of the new zoning ordinance was evident in the construction of the Federal Heights Apartments at 1321 E South Temple in 1929, and the Commodore Apartments at 1107 E South Temple in 1930 in the area zoned for one and two family residences.
Demolition vs. Preservation (1962-2006)

Development pressures on the South Temple area increased during this period. South Temple Street was a desirable address and people again wanted to live and work near the downtown area, close to offices and cultural attractions. Population for the city remained relatively stable during the era, although it decreased slightly in the surrounding neighborhoods.

In 1961, zoning was changed along South Temple from R6 to R7 from Eighth to Ninth East and from K to M Streets to allow for office buildings. Zoning changes were made again in 1972 to encourage the construction of apartment buildings in the Residential R7 district, rather than office buildings. Adaptive reuse of the older houses continued and a number became nursing homes, clinics, office buildings, and in the 1980s, bed and breakfasts.

The demolition of buildings along South Temple, in particular the Walter Ware-designed 1899 Greek Revival Cosgriff Mansion (also known as the Thomas Weir mansion) for the construction of the Steiner Corporation Building at 508 East South Temple in 1967, was the spur that led to the development of a preservation movement in Salt Lake City.

By 1962, few vacant lots were available so the buildings from this period (30 buildings or 18 percent) were constructed on land previously occupied by older, single-family residential buildings. Zoning changes encouraged the new construction that was primarily for medical clinics, multifamily housing and office buildings. Bonneville Tower with 115 units on 15 floors was the pioneer apartment tower on the street at 777 E South Temple in 1964, followed by the 14-story Governors Plaza condominium tower in 1981 at 560 E South Temple.

The 1925 Jacobethan Revival V.R. Madsen house at 1259 E South Temple was converted to condominiums in 1995, and two new buildings constructed nearby for more condominium apartments (at 1263 E South Temple).

Lufkin, Beatrice  South Temple  RL Survey  2013

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.16 South Temple
Ch.17 UNIVERSITY

A HISTORY OF APARTMENT AND MULTI-FAMILY DEVELOPMENT

The following background on the historical development of apartment and other multifamily buildings in the University district draws directly from the reconnaissance level survey of the district in 1995.

General Description

The University Neighborhood Historic District is located on a bench of the Salt Lake valley approximately two miles east of the central business district of Salt Lake City and immediately west of the University of Utah campus. The area contains several original square 10-acre blocks as well as a number of half-size rectangular blocks. It is primarily a residential neighborhood with a commercial strip of two blocks in the east/central part of the district. Out of the 586 buildings in the district, 452 buildings are contributing, 71 are non-contributing due to alterations, and 63 are out-of-period structures. There are also two sites (grass medians and a park) and one structure (the reservoir) within the district.

While the period of significance for the district ranges from c.1883 to 1941, the majority of historic buildings (75%) date from the 1905-1925 period. The tree-lined streets, grass parking medians, sidewalks and uniform set-backs in the neighborhood are distinctive features that enhance its character. The district retains a high degree of its historic integrity with 82% of the buildings contributing to the historic association and feeling of the area.

Multiple Family Dwellings

Historic apartment buildings that contribute to the area include the University Apartments (c.1907) at 201 South 1300 East, the Cluff Apartments (1911) (National Register, 1989), at 1270-1280 East 200 South, the Commander Apartments (c.1928) at 147 South 1300 East, and the Edgehill Apartments (c.1928) at 227 South 1300 East. A complex of apartments buildings on 100 South between 1100 and 1200 East was built c.1955, and although then out of period (Survey 1995), maintains the historic quality of the street. The infill of newer structures has included only a few large apartment buildings, with residences of similar scale and materials comprising the majority of out-of-period structures.
Several urban apartment buildings in this area were built close to the University primarily during the early twentieth century. Urban apartments are significant for their association with the rapid urbanization of Salt Lake City during the 1890-1930s. Apartments document the accommodation of builders and residents to the realities of crowded living conditions and high land values. The apartments in the University Neighborhood Historic District fall within the two periods of construction, 1902-1918 (University and Cluff Apartments) and 1922-31 (Edgehill and Commander Apartments), a break in building that was caused by WWI. Dwellers in apartments are more transient in nature than suburban homeowners and reflect this area’s need for some short-term living accommodations in a predominately single-family dwelling neighborhood.

The need for large numbers of apartments and student housing did not occur until after World War II.

At that time, many of the residences were converted into rental units to accommodate the increasing student enrollment. Most of those houses have maintained rental status, although, since the mid-1990s, a number of homes west of 1300 East have been restored to single family dwellings.

See also: A Preservation Handbook for Historic Residential Properties & Districts in Salt Lake City, Ch.17 University
CH. 18 WESTMORELAND PLACE

A HISTORY OF APARTMENT AND MULTI-FAMILY DEVELOPMENT

The following background on the historical development of apartment and other multifamily buildings in the Westmoreland Place district draws directly from the reconnaissance level survey of the district in 2010. (Lufkin 2010)

The Westmoreland Place Historic District is a small residential neighborhood located on the East Bench of Salt Lake City, Salt Lake County, Utah. It is located 13 blocks south and 15 blocks east of Salt Lake City’s business center. Its 69 primary structures are entirely residential. Single-family houses predominate, but there are four duplexes scattered along the perimeter of the subdivision. Uniformly sized mature shade trees line the streets in the parking strips creating an urban canopy with their branches. Concrete curbs, gutters and sidewalks are found throughout the district. The houses have uniform setbacks and the garages are primarily located at the rear of the lots. All of the houses in the district were built in the period from 1913 to 1952; the majority in the then popular bungalow and period revival cottage styles. Westmoreland Place was designated a local historic district by Salt Lake City in 2010 and is protected by restrictive zoning ordinances.
Westmoreland Place was developed by the Dunshee brothers, Earl and Clark 0., who moved to Salt Lake City from Iowa in the late nineteenth century. The Dunshees worked in the newspaper business for the Salt Lake Herald in Salt Lake City before they began their career as real estate developers. Earl Dunshee was known for having built the first restricted residential area in Salt Lake City, Westminster Heights. The Dunshee brothers filed the plat for the Westmoreland Place subdivision in May of 1913.

The Dunshee-built houses date only from the first decade of the subdivision. The brothers left Salt Lake City for Los Angeles in the 1920s, and other builders completed the subdivision.

All of the primary buildings surveyed were residential, and Westmoreland Place is almost exclusively single-family residences. There are four duplexes. The majority of the contributing buildings have a single story (45 or 75%); 10 have 1.5 stories (17%). There are five contributing buildings (2%) with two full stories.

**Exclusive Street Car Subdivision (1913-1939)**

Two duplexes date from the end of the period. These are 1516 East Westmoreland/1321 South 1500 East from 1939, and 1337/1341 South 1500 East from 1937.

**World War II and Midcentury Infill (1940-1965)**

Two duplexes date from this period. The house at 1526/1530 East 1300 South was built in 1940 and the one at 1373/1375 South 1500 East in 1950.
IV

Design Principles & Guidelines for Sustainable Development
DESIGN PRINCIPLES & GUIDELINES FOR SUSTAINABLE DEVELOPMENT

BACKGROUND

The older neighborhoods and historic districts in Salt Lake City are the foundation of the community’s most sustainable form of development. They combine an urban residential density, character and walkability with a spectrum of small scale commercial enterprise, and proximity to the civic and commercial heart of the city. This is in stark contrast to the post-war patterns of suburban development.

This compact traditional form of development was encouraged by, and now helps to sustain, patterns of mobility that evolved without, and which rely much less on the use of the car. The development patterns, mature landscape, spectrum and diversity of residential scale, type, architectural form and expression, create the ‘livability’ which helps to attract residents and business alike. This livability encourages their consequent investments in the city and its more historic neighborhoods.

Effectively therefore, the unique character of each of these older neighborhoods embodies much of the essence of the economic sustainability, the cultural and social sustainability, as well as the environmental sustainability, of Salt Lake City.

THESE DESIGN PRINCIPLES AND GUIDELINES ON SUSTAINABLE DEVELOPMENT PRACTICE ARE ADVISORY ONLY, AND WILL NOT BE USED IN DESIGN REVIEW.
Historic preservation is effectively the wise use, the conservation of and the investment in our existing resources, including the spectrum of economic, social, cultural and environmental resources. It can also be thought of as the stewardship of the “record” of the many roles and activities of all who have come to Salt Lake City to invest in, and to build this culture and community over the last 170 or so years. This includes the many thousands of cultural and family networks, as well as all of the individual decisions which are manifest in the character of our older neighborhoods today.

Although the policies and goals of environmental sustainability are usually defined at the scale of the city, the region and beyond, they can only really be achieved at the micro level. Their realization will be through the many small decisions which have a cumulative positive effect on the conservation, wise use and generation of energy resources, and upon atmospheric quality. This community consciousness, at the point of individual choice and decision, really continues the traditions which are responsible for the City’s attractive urban residential character today.

In a setting and a climate which bring their own distinct environmental issues and challenges, including temperature variation, air quality and water resources, it is essential that city and regional policy ensures that the stewardship of our historic architectural and cultural resources is a central part of policy goals and practice in environmental stewardship.

In turn, environmental stewardship depends upon our understanding of the environmental assets and advantages of traditional development patterns, neighborhoods and buildings. Equally, that we use this understanding to ensure that these assets are not lost to ill-considered, short-term expediency, and an unconsidered assumption that somehow “new” is always “better”.

It is equally essential that new construction, whether a new building, a new addition or improvements to an existing building, make the most effective use of both traditional and contemporary wisdoms, technologies and best practices in reaching decisions on situation, construction, energy efficiency and its renewable generation.

A successful approach to ensuring a more sustainable and energy efficient form of development (including energy conservation and generation) in our existing older buildings and in new construction, will rely upon an understanding of four interrelated principles.

**Embodied energy and life cycle costs.**

This is the energy already invested in the construction of our current neighborhoods and buildings, and the costs associated with the construction or production of a building or component, its expected life span costs, including those costs associated with maintenance, repair and disposal.

**Passive energy and climate control characteristics and measures.**

These include building materials, thermal mass and insulation, room volumes, operable windows, natural ventilation, porches, eaves and other forms of building shading.

**Active mechanical measures.**

Active measures include traditional ceiling fans, air conditioning and heating systems, heat exchangers and emerging smart technology to monitor and automatically calibrate use patterns, and to make adjustments for energy management and savings.
Renewable sources of energy generation.

These tap and harness the natural resources we have, and include geothermal heat pumps, solar collector panels and cells, wind and water turbines, and arguably biomass heating.

Our recent focus on purchasing short-lived replacement building components which are marketed as ‘energy efficient upgrades’ has clouded or obscured our understanding of the inherent environmental advantages of our traditional buildings and their construction. Such knowledge was once much more universally understood and appreciated, and not just by designers and builders. A clear understanding of these characteristics and assets is however essential to achieving sensitive and sustainable solutions for both our existing buildings and new development.

APPLICABILITY

These design principles and guidelines on sustainable development practice are advisory only. They provide guidance on the consideration of site works, the maintenance, repair and rehabilitation of our older buildings, and to the planning and development of a new addition or building, whether it be single or multifamily residential, mixed use, commercial or institutional.
A DESIGN APPROACH IN SUSTAINABLE DEVELOPMENT

An approach to sustainable design for a building and for the community should:

• Evaluate the building and look at the neighborhood, its settlement and street pattern, its urban form, accessibility, walkability and livability.

• Understand the investment in the existing neighborhood, the site and building, economically, culturally, environmentally – in fact all definitions of energy investment.

• Understand the flexibility and adaptability of traditional building forms and fabric, and the advantages of their continuing use.

• Understand the structure, construction and materials, and the inherent climate control characteristics and dynamics of an older building.

• Gauge energy improvements and efficiency in the context of the original building, and not against the potential performance of a new building which would ignore the life cycle costs associated with demolition and new construction.
EMBODIED ENERGY & LIFE CYCLE COSTS

Two principal measures of sustainable development, on which our existing historic development patterns and building stock score highly, are “embodied energy” and “life cycle costs”.

Embodied Energy

Embodied Energy can be defined as the sum total of the energy invested in the initial construction and subsequent investment in the building to date, and encompasses many facets. Embodied Energy Investment will include:

- The initial subdivision design and layout.
- The associated site grading and preparation.
- The sourcing, cutting, grading, moulding, firing and preparation or manufacture of the construction materials.
- Their transport to site.
- The construction of the building including the time, skills and labor involved.
- Subsequent building improvements and additions, and
- Periodic maintenance and/or repairs.

With the demolition of the building the embodied energy is lost.

Life Cycle Cost

Life Cycle Cost and cost analysis in this context is an analytical measure of the initial and subsequent costs of acquiring and operating a building across its life span. Our more historic buildings score highly in various respects in such an analysis, largely due to characteristics such as:

- The quality and durability of initial construction, materials and craftsmanship,
- The fact that older buildings can be readily maintained and repaired at low cost,
- That they are not constructed from limited life-span component parts, which have to be replaced in their entirety at notable cost when they fail, and
- The inherent advantages of older building fabric, in terms of its adaptability and its energy efficiency, especially when these advantages are supplemented by informed upgrades.

Given their durability, longevity and low maintenance costs, the life cycle cost of traditional materials will be very low when set against the energy savings achieved by replacement components and materials, which in most cases have a built-in obsolescence factor and limited life span.

Cost would include the initial construction, its component elements and fitting out of the building, in terms of raw and finished materials, their associated waste products and pollution. The durability and longevity, the potential life span, of an older building, will be determined by the periodic attention and maintenance it receives, coupled with usually minor repairs assuming it has not been neglected. It will not be determined by the failure of various manufactured components, at much greater replacement cost. Maintenance costs will be very low if the building is monitored periodically.
Disposal of the building, or components of the building, with either full or partial demolition, also comes with significant costs. These include the negative impacts of demolition waste, land fill requirements and the associated and sometimes highly toxic pollution arising from various methods of disposal.

By contrast, an older building, of traditional and robust construction, does not have a life span determined by the designed operational life of its components, nor the inflexibility of its design and construction methods, but, alternatively, by the understanding and informed periodic minor care it receives, usually at minimal cost.

**ENERGY CONSERVATION & EFFICIENCY**

Energy conservation and energy efficiency characteristics in an older building derive in major part from what can be described as the passive climate control advantages of traditional layout and construction. Plan layout, inherent insulation values of wall mass, interior volumes, natural ventilation, shade characteristics and materials are all components. At the basic level, buildings provide shelter from the extremes of heat, cold, rain and wind, and ideally beyond that, a comfortable working or living environment, including adequate insulation and ventilation.

Buildings also account for the majority of our energy consumption. Energy use and efficiency are consequently significant concerns, whether measured in day to day running costs, or the costs to the global environment. Life cycle cost becomes a major factor in this consideration.

Traditional construction, design and materials rely upon a time-honored understanding and techniques of interior and exterior shelter and climate management and control. Building shelter and shade are directly influenced by orientation, mature tree cover and landscape, and are also afforded by porches, stoops, eaves and window reveals. Roof forms and building massing also have a role to play.

Traditional construction materials, such as masonry, have a thermal mass which absorbs heat and cold slowly, and have a regulating, moderating and ‘capture’ effect on temperature extremes. Unless allowed to deteriorate, masonry is also very effective at dealing with rain and frost, continually absorbing and allowing the evaporation of degrees of moisture in the form of rain, snow and ground water.
Traditional wood, whether used as a cladding material, building structure or for sections of a masonry building, e.g. porches, windows, doors, fascia and eaves, is usually from old growth trees and milled to appropriate dimensions. With its tighter grain, it is a denser, tougher and more resilient material than the recently harvested wood currently available.

Interior room volumes and operable windows jointly play a notable role in interior climate control, natural ventilation and comfort, as well as ensuring a healthy circulation of fresh air. Coupled with low key mechanical intervention, such as ceiling fans, these assets can be employed to their maximum.

Understanding how these characteristics and dynamics are designed to work will ensure that energy efficiency enhancement strategies are designed to be complementary, capitalizing on these advantages, while accentuating their attributes and efficiency.

**RENEWABLE ENERGY – PASSIVE & ACTIVE**

Renewable energy generation is a component of sustainable development which does not deplete natural resources or cause pollution in generating energy. Renewable energy sources can be both passive and active. While they are harnessed to provide large scale industrial and community energy, they also have a role to play at the more intimate scale of the individual building and in the form of development.

**Passive Energy Management**

Passive energy measures play a significant role in climate control, and can be as simple as heat absorbing materials, such as masonry, which absorb heat during a warmer day, releasing it through the cooler night. The effect works equally well providing a cooling effect in hot weather. The high density, temperature-capture and storage properties of masonry help to moderate extremes of heat and cold, and act as a passive energy source.

Window glass transfers both heat and cold, and can be a very effective source of interior solar heat gain in cold weather, reducing the burden on other mechanical systems. Operable windows also have passive energy generating and control characteristics in providing air circulation and ventilation. The double-hung sliding sash window in particular is designed to pull in cooler air below as it affords escape for warmer air above.

In a hot summer climate, shading a building to reduce solar gain will be critical. This can be achieved through situation, orientation, balconies or porches, fenestration and architectural shade elements. It can also be achieved using planting and tree cover, where mature deciduous trees in particular provide the benefit of effective summer shading with reduced shade to permit greater solar gain in the colder winter months.
Active Renewable Energy Generation

Active renewable energy generation systems have been much studied, and have made significant technological strides in recent years.

**Geothermal** sources are perhaps the lower end of the technological spectrum. Circulating liquid at a specific depth below the ground surface can tap the constant temperature of the ground, both for residual heat and a residual cooling effect. Using heat exchangers, this type of system can notably reduce the burden on or need for heating and cooling systems.

The concept behind **biomass** energy is that heat is created by the combustion of a fuel source which can be continually grown, or produced as waste, and although requiring more attention, it is also more immediately deployable when required.

**Wind and water turbines** have a long-standing historical pedigree, providing a source of power at both a small and a large scale. Smaller turbine units have been developed to deliver greater efficiency than their historic counterparts, and at a scale which can be deployed for an individual building, site or narrow water channel.

**Solar collectors** are either thermal, where the sun directly heats water in a closed grid, or photovoltaic, where the energy from the sun is converted to electricity through a series of chemical cells. Solar collectors for urban building use are usually in the form of panels, although becoming increasingly available in the form of smaller units, solar laminates and roofing shingles.
EXISTING BUILDINGS AND NEIGHBORHOODS

It is essential to understand your building and its situation, in terms of local and regional climate and micro-climate, and established urban settlement patterns. Knowing the dynamics of traditional construction and materials, their advantages and response to exposure and seasonal conditions, will ensure that the building will endure, and furnish shelter, comfort and a healthy living environment. Energy efficient aspects of the original building, its site and current setting should be retained and if necessary enhanced.

URBAN FORM

The urban form of our historic and traditional neighborhoods is a critical component in the sustainable development of the city. The combination of a tighter urban grain (buildings and streets), complex hierarchy of the street and access patterns, concentration and proximity of residential and commercial buildings to each other and to the central core of the city (reduced energy and cost in travel), access to public transit and a choice of options for walking and cycling, mature tree cover and landscaping, combine to create an attractive, mature and durable form and character, encompassing most of the prerequisites for a sustainable form of development. The care taken with their layout, design and construction, coupled with the seasoned maturity of these neighborhoods, should help to ensure they continue as the most livable of city locations.

Street Pattern and Settlement Pattern

S.1 Maintain and design to compliment the current and historic street pattern and settlement pattern. These elements include:

- Streets, lanes, alleys, squares.
- Sidewalks, footpaths, trails.
- Lot density, arrangement, size & configuration.
- Access points to streets, alleys, trails and open space.

S.2 Create or enhance access points wherever possible.

Building Orientation, Situation and Proximity

Understand and plan to maximize energy efficiency in building orientation, situation and proximity in maintenance, repairs, alterations and additions, and in the siting and design of a new building. In the context of local topography consider the following:

- Solar and wind exposure.
- Rain and frost exposure.
- Seasonal variations and extremes.
- Prevailing solar and wind exposure.
Landscape, Ground Cover and Trees

S.3 Retain mature landscape, including ground cover planting and trees. Consider the following:

- Aspect and shelter.
- Proximity to the structure.
- Seasonal variations - weather and micro-climate.
- Plan maintenance and new planting with an understanding of their seasonal role and performance in providing shelter, shade and solar access, as well as decorative impact.

S.4 Consider the design of new landscaping to manage, conserve and reuse water, and to recharge ground water. Consider the following:

- Grading and landscaping to collect water and to disperse the flow.
- Collection of rainfall for irrigation use, using bio-swales, rain gardens, water barrels, etc.
- Select new native planting to conserve water and reduced irrigation requirements.
- Minimizing impermeable hard surfaces.
- There may be State regulations on the harvesting and use of rainwater.

Site Planning

S.5 Minimize site work that would adversely affect mature trees or disrupt mature layout and planting on this or adjacent sites.

- Retain historic or early site features and accessory structures.
- Maintain shading and shelter of the building and parking areas.
- Plan improvements to enhance shade and/or shelter as appropriate to complement climate control.
TRADITIONAL BUILDING FORM & CONSTRUCTION

Knowledge and appreciation of the characteristics and performance of original building materials, details and craftsmanship in building maintenance, repairs and alterations will simultaneously achieve preservation, conservation and sustainability objectives. Older buildings, designed and constructed with integral advantages in passive internal climate control, have distinct characteristics which are inherently sustainable. Understanding these characteristics and dynamics makes sound scientific sense and this understanding is a prerequisite of maximizing energy conservation and efficiency.

Historic masonry and recessed windows here combine natural materials, thermal mass and shade with natural ventilation to enhance energy conservation, management and efficiency, while creating some of the best examples of the city’s historic architectural character.

Solid masonry, projecting eaves and natural ventilation with original windows combine with other sustainable characteristics.
A further point on historic character is that original and early materials have a patina of age and maturity which does not compromise their integrity or performance. It adds immensely to the historic character of an older building and neighborhood. It is a characteristic defining time, history and maturity that should be retained.

**Historic and Traditional Materials**

**S.6** Retain historic and traditional materials for their durability, low maintenance requirements and character-defining properties.

**S.7** Plan for a periodic maintenance review and attend to potential issues, including the following:

- Identify and resolve any causes or issues of potential water damage.
- Caulk or fill any open joints and cracks.
- Repaint or repair woodwork rather than replace it.
- Repoint masonry with a compatible mortar to maintain the integrity of the component or the facade.

**S.8** Ensure any external materials are allowed to breath.

- Avoid sealing in moisture by over-cladding with new materials.
- Do not paint masonry which has not been painted and avoid sealants in most circumstances.
- Consider paint removal from masonry if it can be achieved with the necessary care to avoid damaging the masonry.
S.9 Retain the historic character and appearance of original materials and finishes, and repair or replace only where necessary.

- Historic character includes a ‘patina of age.’
- Mature historic materials do not need to look new.
- Most masonry cleaning is unnecessary, and can permanently damage historic materials if not handled with great expertise.

Windows and Doors

Understand the energy efficient and sustainable characteristics and advantages of older windows and historic doors. They are inherently maintainable and repairable, while their capacity to outlast replacement windows and doors is echoed by their capacity to match them in energy management terms. With minimal maintenance, restoration or repair they can last as long as the building itself.

Inexpensive weatherization, such as caulking and weatherstripping, coupled with an interior or exterior storm window or door, should ensure that they approach or match replacements in energy and acoustic efficiency. Furthermore, they will not need to be replaced again when they fail, in total or in part. Where they no longer open as they were designed to do, they can be readily repaired at minimal cost to restore their role in providing natural ventilation and internal climate control.

Refer to the Additional Information section at the end of this chapter for further data.

MAINTAIN

S.10 Maintain and retain the materials, craftsmanship, glass and hardware of original or early windows.

- Consider the orientation of windows and doors in relation to wind, shade or solar gain.
- South and west facades are the most exposed to solar ultra-violet light and prevailing winds and rain.
- Replace cracked or loose putty/glazing compound, and repaint before moisture gradually damages the framework.
- Retain and maintain opening windows and their hardware.

REPAIR

S.11 Repair to restore the integrity of an original or early window frame.

- Retain as much of the original frame as possible, since this is likely to be very durable material.
- Only replace materials or parts which are beyond repair, reducing associated cost at the same time.
- Repair where required to ensure the windows can assist with internal climate control and provide natural ventilation.

External storm windows combined with the original windows can outperform replacements in acoustic and energy terms.
UPGRADE

S.12 Retain and upgrade the energy and acoustic performance of an early or original window using a related series of measures.

- Weatherstrip to reduce air infiltration and eliminate drafts around the framework.
- Caulk also around the sub-frame jambs and trim to eliminate drafts.
- Consider the addition of storm windows or doors on the interior or exterior to enhance thermal and also acoustic performance.
- Consider the use of a solar film applied to window glass or storm window glass.
- Where original glass is missing, consider low-e replacement glass, which can often be achieved without a notable change in tint, color or reflection.

S.13 In most cases, avoid using sealed double-pane replacement glass in an original wood window frame.

- The original frame and hardware will usually be unable to carry in excess of double the weight of the original glass, consequently damaging the framework.
- Evaluate slim profile double-pane units if the frame is sufficiently durable.
- A sealed double-pane glass unit has a life limited to the integrity of the seal, and will ‘fog’ with condensation when this fails.
- The inert gas between the two panes has a high embodied energy impact.
- Consider using an external or internal storm window, since this can match or exceed the energy and acoustic performance of a replacement, with no prelimited life span.

S.14 Consider the internal shade and insulation advantages of curtains, blinds and shutters.

- Prioritize importance in relation to the most exposed faces of the building.

Elements of Shading - Porches, Stoops, Eaves, Window Reveals, Window and Door Canopies

S.15 Retain shade elements, or repair or reinstate where appropriate.

- Retain the original materials, craftsmanship and details.
- Review and consider their reinstatement where previously lost, prioritizing to address the facades with the greatest exposure.
- Consider the addition of external canopies to enhance window shading.

Rehabilitation of the building here involved retaining, repairing and upgrading the original steel framed windows.
ENERGY CONSERVATION
Most historic buildings have distinct energy efficient characteristics. Evaluate priorities for energy upgrades with these advantages informing the program of work. Similarly, work with the historic and architectural character of the building, site and setting when arriving at decisions on investing in renewable forms of energy generation.

INSULATE
S.16 Install or upgrade insulation.
• The attic, basement and crawl space are the priorities to reduce loss of heat.

S.17 Original or early windows and doors should be retained, maintained, and where necessary repaired.
• Weatherstrip and insulate, using storm windows/doors, solar film, curtains and blinds.

S.18 With mature landscaping, retain and maintain trees, shrubs, ground cover and enhance where appropriate.
• In paved areas, maximize natural ground cover to absorb and retain water for subsequent use, and to avoid excess run off.

S.19 Plan new landscaping to enhance mutually beneficial solar relationship, provide shelter from wind exposure, and capitalize on rainwater, snow management, and water reuse.

ENERGY GENERATION - RENEWABLE SOURCES
Similarly, work with the historic and architectural character of the building, site and setting when arriving at decisions on investing in renewable forms of energy generation.

S.20 Avoid adverse impact on the historic character of the building, site or setting while choosing a site.

S.21 Consider the use of solar thermal panels.

S.22 Consider options and configurations of geothermal heat source in relation to ground conditions and site constraints.

S.23 Consider wind (and water) turbines, which increasingly are small enough to be both versatile and unobtrusive.

S.24 Consider the use of solar photovoltaic panelling.
• These are now available as panels of differing sizes, solar laminates and shingles, and are adaptable to a variety of circumstances.
• With a roof mounted location choose a situation which will maximize energy generation without adverse visual impact upon architectural character.
• Consider solar panel location on accessory buildings or in free standing arrays where they would adversely affect the character of the building.
• Avoid a situation which would prompt the removal of mature tree cover or vegetation, with their environmental advantages.
• Consider the impact of reflection upon neighboring buildings and streets.
• Consider options and configurations of a geothermal heat source in relation to ground conditions and site constraints.
NEW CONSTRUCTION

Existing residential neighborhoods and buildings in the city have distinct advantages in the forms of sustainable development they provide. Site planning and building design for new construction can learn much from these traditions and patterns of development. More recent research and practice in assembling a more thorough and integrated approach to sustainable development can build on these.

Salt Lake City also has a strong tradition of apartment living. Apartment buildings from the later nineteenth and earlier twentieth centuries provide some of the most characteristic and impressive historic architecture in the city.

Today, they provide a type of housing that immediately achieves a sustainable urban density. Plan form, structure, materials, balconies and operable windows are inherently sustainable characteristics of these buildings. Many of these advantages should inform what we build today if we are to continue this tradition in the interests of the economically and environmentally sustainable development of the city.

These design guidelines advise on a number of matters which should help to enhance an integrated consideration of best sustainable development practice in a historic setting.
SETTLEMENT PATTERN AND SITUATION

S.25  Reuse the existing building, or parts of it, wherever possible.
- Retain and repurpose the original building and/or materials.
- Recycle materials, deconstructing the original as necessary.

S.26  Plan for regional and local climate and associated weather patterns, to moderate and capitalize upon these characteristics.
- Identify prevailing wind and solar impact, and design to maximize advantages, yet minimize extreme exposure.
- Orient and design to maximize shelter, shade, seasonal solar gain and sheltered external space (both common and private).

S.27  Plan for easy access to public transit, walking and cycling.
- Retain or create rear alley, lane or secondary street space, both public and private.
- Plan for direct access to streets and trails.
- Retain or create rear and side access points.

S.28  Plan and design for a variety of private and common/public spaces.
- Provide versatile and flexible arrangements for both shade and solar access.

SITE PLANNING

S.29  Retain and reuse historic or original site features and materials.

S.30  Deconstruct and repurpose these wherever possible, if they cannot be retained and reused.

S.31  Work closely with the existing topography, maximising landscaped open space across the site.

SITE LAYOUT AND ACCESS

S.32  Design primarily for pedestrian and bicycle use and access.
- Minimize hard impervious paving.
- Maximize landscaping and permeable paving.

S.33  Minimize vehicular hard paved drive area and parking surface.
- Grade for sheet flow and dispersal of water to adjacent landscaped spaces.
- Place parking underground and minimize open parking areas.
- Use water-permeable paving.

S.34  Plan for a variety of public and private spaces which are landscaped, shaded and sheltered, and common gardening space where possible.

S.35  Plan and landscape for efficient water management and conservation.
- Consider all surfaces across the site, including those of the building/s.
S.40 Maximize landscaped areas while minimizing utility areas.

- Where appropriate consider the roof areas of the building as part of the site landscaping, and energy and water management strategy.
- Design landscaping and planting with a view to tempering excess heat or cold.
- Design and choose plant varieties to allow for solar gain and ventilation.
- Design building footprint and landscaping to manage water in dispersed areas across the site, including swales and rain gardens.
- Choose indigenous plant species to maximize water conservation, and consider aspect and climatic extremes.
- Plan for communal/shared garden space/s.

LIGHTING

S.42 Minimize the need for external artificial lighting, while accounting for safety and a sense of security.

- Avoid sources of light pollution.
- Design and site external lighting to avoid light spill and glare.
- Consider the use of solar powered lighting wherever possible.
- Use low energy light sources where possible.
Design Principles & Guidelines for Sustainable Development

BUILDING DESIGN

S.43 Design the building to maximize passive energy management. Consider the following:
- Design the fenestration to take advantage of building aspect.
- Design to take advantage of the shading provided by aspect, window reveals, recessed entrances, canopies and awnings.

S.44 Design windows to open for natural ventilation, interior atmosphere and a healthy living and working environment.
- Avoid window construction with a high inherent obsolescence record in the extremes of the Utah climate.

S.45 Design to provide the shade afforded by the articulation of building facades and the depth of the eaves.

S.46 Design for variable massing to create upper terrace outdoor spaces and landscaped areas.

S.47 Provide porch and stoop semi-public/private shaded spaces for their climatic moderating advantages.

S.48 Plan for external balcony space for each unit.

S.49 Wherever feasible provide green roof cover to enhance temperature and water management, and ecological diversity.
- Investigate roof type and potential maximum loadings to check suitability.
- Design as part of a landscaped roofscape amenity.

S.50 Design for adaptability and flexibility in future layout and use.
- Learn from the adaptability of older buildings.
- Anticipate the future reuse of the building in the form and construction of the interior.

S.51 Design to reduce indoor water use.
- Make use of captured outdoor water where practicable.

S.52 Consider color schemes with solar reflectivity as well as urban setting in mind.

S.53 Design with sustainable and durable materials.
- Evaluate the energy management advantages of the thermal mass of denser more durable materials.
- Choose materials for their stability and low emissivity characteristics.
- Avoid experimental or synthetic materials which have no track record of durability.
- Avoid experimental or synthetic materials which produce pollution or toxic waste in their manufacture or disposal, or create environmental damage or disfiguration in their extraction.

Recent multifamily design composed with varied volumes and massing, private and communal open space, and constructed using solid, durable materials.
S.54 Plan and design for renewable energy generation, including solar, geothermal, wind/water as appropriate for the building, the site and its setting.

- Consider what options will best suit building and situation.
- Minimize visual impact from the street and from adjacent buildings.
- Consider siting on and off the building.
- Design as part of the roof layout and landscaping.
- Consider the use of solar shingles and solar laminates, as well as solar panels for different roof configurations.
Additional Information

GENERAL

National Park Service. Technical Preservation Services. Sustainability
www.nps.gov/tps/sustainability.htm

www.nps.gov/tps/sustainability/energy-efficiency.htm

www.nps.gov/tps/sustainability/new-technology.htm

www.nps.gov/tps/sustainability/case-studies.htm#fuller-paint

National Park Service. Technical Preservation Services. Research
www.nps.gov/tps/sustainability/research.htm

National Park Service. Technical Preservation Services. Resources
www.nps.gov/tps/sustainability/resources.htm

National Park Service. Technical Preservation Services. Sustainability Standards & Guidelines
The Secretary of the Interior’s Standards for Rehabilitation & Illustrated Guidelines on Sustainability for Rehabilitating Historic Buildings. 2011

Burns, John A., Energy Conserving Features Inherent in Older Homes 1982
www.nps.gov/tps/sustainability/greendocs/conservation-features-older-homes.pdf

http://www.nps.gov/tps/how-to-preserve/briefs/3-improve-energy-efficiency.htm


Randl, Chad. Preservation Brief 44: The Use of Awnings on Historic Buildings: Repair, Replacement and New Design. 2005
http://www.nps.gov/tps/how-to-preserve/briefs/44-awnings.htm

National Institute of Building Sciences Whole Building Design Guide - Historic Preservation
http://www.wbdg.org/design/historic_pres.php
http://www.wbdg.org/resources/sustainable_hp.php?r=historic_pres


National Trust for Historic Preservation. Weatherization
http://www.preservationnation.org/information-center/sustainable-communities/buildings/weatherization/#.UxUER2eYZpo

National Trust for Historic Preservation. Sustainability
Older, Smaller, Better 2014
http://www.preservationnation.org/information-center/sustainable-communities/creating/#.U-1RaWd0zc1
http://www.preservationnation.org/information-center/sustainable-communities/green-lab/#.U-1RrGd0zc1
http://www.preservationnation.org/information-center/sustainable-communities/buildings/#.U-6XuWd0zc0

The Greenest Building 2011

Historic Scotland. Changeworks, Resources for Life.

Energy Heritage 2008

Renewable Heritage
Tenement Fact Sheets

Improving Energy Efficiency in Traditional Buildings

English Heritage. Energy Efficiency in Older Houses
http://www.english-heritage.org.uk/your-home/saving-energy/energy-efficiency/

WINDOWS  Weatherization, Energy Efficiency & Management

National Trust for Historic Preservation.
http://www.preservationnation.org/information-center/sustainable-communities/buildings/weatherization/windows/.U-6XRGd0zc0
www.preservationnation.org/information-center/sustainable-communities/buildings/weatherization/windows/.U-568md0zc1

Saving Windows, Saving Money 2012
http://www.preservationnation.org/information-center/sustainable-communities/green-lab/saving-windows-saving-money/.U-6VkWd0zc0

www.nps.gov/tps/sustainability/energy-efficiency/weatherization/windows-doors.htm
www.nps.gov/tps/sustainability/research.htm
www.nps.gov/tps/sustainability/resources.htm

http://www.nps.gov/tps/how-to-preserve/briefs/9-wooden-windows.htm

http://www.nps.gov/tps/how-to-preserve/briefs/13-steel-windows.htm


English Heritage. Advice on historic windows.
Design Principles & Guidelines for Sustainable Development

WINDOWS  Storm Windows


Appendices

Appendix A. Salt Lake City Historic Design Standards & Secretary of the Interior’s Standards
  Part 1 - Salt Lake City Ordinance
  Part 2 - The Secretary of the Interior’s Standards for the Treatment of Historic Properties

Appendix B. Information & Resources
  Part 1 - Arranged by Subject
  Part 2 - Arranged by Key Websites
  Part 3 - Preservation Briefs. Preservation Technical Services, National Park Service

Appendix C. Glossary of Terms
Appendix A. Historic Design Standards for Alterations & New Construction

Part 1. Salt Lake City Ordinance

This appendix displays relevant excerpts from the Salt Lake City Code. This code is available online at: http://sterlingcodifiers.com/codebook/index.php?book_id=672&section_id=780546

ALTERATIONS

Section 21A.34.020.G

G. Standards For Certificate Of Appropriateness For Alteration Of A Landmark Site Or Contributing Structure: In considering an application for a certificate of appropriateness for alteration of a landmark site or contributing structure, the historic landmark commission, or the planning director, for administrative decisions, shall find that the project substantially complies with all of the following general standards that pertain to the application and that the decision is in the best interest of the city:

1. A property shall be used for its historic purpose or be used for a purpose that requires minimal change to the defining characteristics of the building and its site and environment;
2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided;
3. All sites, structures and objects shall be recognized as products of their own time. Alterations that have no historical basis and which seek to create a false sense of history or architecture are not allowed;
4. Alterations or additions that have acquired historic significance in their own right shall be retained and preserved;
5. Distinctive features, finishes and construction techniques or examples of craftsmanship that characterize a historic property shall be preserved;
6. Deteriorated architectural features shall be repaired rather than replaced wherever feasible. In the event replacement is necessary, the new material should match the material being replaced in composition, design, texture and other visual qualities. Repair or replacement of missing architectural features should be based on accurate duplications of features, substantiated by historic, physical or pictorial evidence rather than on conjectural designs or the availability of different architectural elements from other structures or objects;
7. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible;

8. Contemporary design for alterations and additions to existing properties shall not be discouraged when such alterations and additions do not destroy significant cultural, historical, architectural or archaeological material, and such design is compatible with the size, scale, color, material and character of the property, neighborhood or environment;

9. Additions or alterations to structures and objects shall be done in such a manner that if such additions or alterations were to be removed in the future, the essential form and integrity of the structure would be unimpaired. The new work shall be differentiated from the old and shall be compatible in massing, size, scale and architectural features to protect the historic integrity of the property and its environment;

10. Certain building materials are prohibited including the following:
    a. Vinyl or aluminum cladding when applied directly to an original or historic material, and
    b. Any other imitation siding material designed to look like wood siding but fabricated from an imitation material or materials;

11. Any new sign and any change in the appearance of any existing sign located on a landmark site or within the H historic preservation overlay district, which is visible from any public way or open space shall be consistent with the historic character of the landmark site or H historic preservation overlay district and shall comply with the standards outlined in chapter 21A.46 of this title;

12. Additional design standards adopted by the historic landmark commission and city council.

NEW CONSTRUCTION

Section 21A.34.020.H

H. Standards For Certificate Of Appropriateness Involving New Construction Or Alteration Of A Noncontributing Structure: In considering an application for a certificate of appropriateness involving new construction, or alterations of noncontributing structures, the historic landmark commission, or planning director when the application involves the alteration of a noncontributing structure, shall determine whether the project substantially complies with all of the following standards that pertain to the application, is visually compatible with surrounding structures and streetscape as illustrated in any design standards adopted by the historic landmark commission and city council and is in the best interest of the city:

   1. Scale And Form:
      a. Height And Width: The proposed height and width shall be visually compatible with surrounding structures and streetscape;
Appendix A. Part 1. Salt Lake City Ordinance

b. Proportion Of Principal Facades: The relationship of the width to the height of the principal elevations shall be in scale with surrounding structures and streetscape;

c. Roof Shape: The roof shape of a structure shall be visually compatible with the surrounding structures and streetscape; and

d. Scale Of A Structure: The size and mass of the structures shall be visually compatible with the size and mass of surrounding structure and streetscape.

2. Composition Of Principal Facades:

a. Proportion Of Openings: The relationship of the width to the height of windows and doors of the structure shall be visually compatible with surrounding structures and streetscape;

b. Rhythm Of Solids To Voids In Facades: The relationship of solids to voids in the facade of the structure shall be visually compatible with surrounding structures and streetscape;

c. Rhythm Of Entrance Porch And Other Projections: The relationship of entrances and other projections to sidewalks shall be visually compatible with surrounding structures and streetscape; and

d. Relationship Of Materials: The relationship of the color and texture of materials (other than paint color) of the facade shall be visually compatible with the predominant materials used in surrounding structures and streetscape.

3. Relationship To Street:

a. Walls Of Continuity: Facades and site structures, such as walls, fences and landscape masses, shall, when it is characteristic of the area, form continuity along a street to ensure visual compatibility with the structures, public ways and places to which such elements are visually related;

b. Rhythm Of Spacing And Structures On Streets: The relationship of a structure or object to the open space between it and adjoining structures or objects shall be visually compatible with the structures, objects, public ways and places to which it is visually related;

c. Directional Expression Of Principal Elevation: A structure shall be visually compatible with the structures, public ways and places to which it is visually related in its orientation toward the street; and

d. Streetscape; Pedestrian Improvements: Streetscape and pedestrian improvements and any change in its appearance shall be compatible to the historic character of the landmark site or H historic preservation overlay district.

4. Subdivision Of Lots: The planning director shall review subdivision plats proposed for property within an H historic preservation overlay district or of a landmark site and may require changes to ensure the proposed subdivision will be compatible with the historic character of the district and/or site(s).
The Standards for Rehabilitation, codified in 36 CFR 67, are regulatory for the review of rehabilitation work in the Historic Preservation Tax Incentives program.

The Guidelines are advisory, not regulatory.

**A2 Selecting a Treatment**

www.nps.gov/tps/standards/four-treatments.htm

Choosing an appropriate treatment for a historic building or landscape is critical.

Preservation focuses on the maintenance and repair of existing historic materials and retention of a property’s form as it has evolved over time.

Rehabilitation acknowledges the need to alter or add to a historic property to meet continuing or changing uses while retaining the property’s historic character.

Restoration depicts a property at a particular period of time in its history, while removing evidence of other periods.

Reconstruction re-creates vanished or non-surviving portions of a property for interpretive purposes.

The choice of treatment depends on a variety of factors, including the property’s historical significance, physical condition, proposed use, and intended interpretation. Historic buildings are used as an example below. The decision making process would be similar for other property types.

Relative importance in history. Is the building nationally significant? Is it a rare survivor or the work of a master architect or craftsman? Did an important event take place in it? National Historic Landmarks, designated for their “exceptional significance in American history,” or many buildings individually listed in the National Register often warrant Preservation or Restoration. Buildings that contribute to the significance of a historic district but are not individually listed in the National Register more frequently undergo Rehabilitation for a compatible new use.
Appendix A. Part 2. The Secretary of the Interior’s Standards

Physical condition. What is the existing condition, or degree of material integrity, of the building prior to work? Has the original form survived largely intact or has it been altered over time? Are the alterations an important part of the building’s history? Preservation may be appropriate if distinctive materials, features, and spaces are essentially intact and convey the building’s historical significance. If the building requires more extensive repair and replacement, or if alterations or additions are necessary for a new use, then Rehabilitation is probably the most appropriate treatment.

Proposed use. An essential, practical question to ask is: Will the building be used as it was historically or will it be given a new use? Many historic buildings can be adapted for new uses without seriously damaging their historic character. However, special-use properties such as grain silos, forts, ice houses, or windmills may be extremely difficult to adapt to new uses without major intervention and a resulting loss of historic character and even integrity.

Mandated code requirements. Regardless of the treatment, code requirements will need to be taken into consideration. But if hastily or poorly designed, code-required work may jeopardize a building’s materials as well as its historic character. Thus, if a building needs to be seismically upgraded, modifications to the historic appearance should be minimal. Abatement of lead paint and asbestos within historic buildings requires particular care if important historic finishes are not to be adversely affected. Finally, alterations and new construction needed to meet accessibility requirements under the Americans with Disabilities Act of 1990 should be designed to minimize material loss and visual change to a historic building.

The Guidelines for the Treatment of Historic Properties illustrate the practical application of each treatment to historic properties. These Guidelines are also available in PDF format and are sold in printed format.

The Guidelines for the Treatment of Cultural Landscapes apply the treatment standards to historic cultural landscapes.

B1 Standards for Preservation

www.nps.gov/tps/standards/four-treatments/treatment-preservation.htm

A property will be used as it was historically, or be given a new use that maximizes the retention of distinctive materials, features, spaces, and spatial relationships. Where a treatment and use have not been identified, a property will be protected and, if necessary, stabilized until additional work may be undertaken.

The historic character of a property will be retained and preserved. The replacement of intact or repairable historic materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate, and conserve existing historic materials and features will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.

Changes to a property that have acquired historic significance in their own right will be retained and preserved.

Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

The existing condition of historic features will be evaluated to determine the appropriate level of intervention needed. Where the severity of deterioration requires repair or limited replacement of a distinctive feature, the new material will match the old in composition, design, color, and texture. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.
Appendix A. Part 2. The Secretary of the Interior’s Standards

Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

Preservation as a Treatment

When the property’s distinctive materials, features, and spaces are essentially intact and thus convey the historic significance without extensive repair or replacement; when depiction at a particular period of time is not appropriate; and when a continuing or new use does not require additions or extensive alterations, Preservation may be considered as a treatment.

The Guidelines for the Treatment of Historic Properties illustrate the practical application of these treatment standards to historic properties. These Guidelines are also available in PDF format.

The Guidelines for the Treatment of Cultural Landscapes apply these treatment standards to historic cultural landscapes.

B2 Standards for Rehabilitation

www.nps.gov/tps/standards/four-treatments/treatment-rehabilitation.htm

A property will be used as it was historically or be given a new use that requires minimal change to its distinctive materials, features, spaces, and spatial relationships.

The historic character of a property will be retained and preserved. The removal of distinctive materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

Each property will be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or elements from other historic properties, will not be undertaken.

Changes to a property that have acquired historic significance in their own right will be retained and preserved.

Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.

Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

New additions, exterior alterations, or related new construction will not destroy historic materials, features, and spatial relationships that characterize the property. The new work will be differentiated from the old and will be compatible with the historic materials, features, size, scale and proportion, and massing to protect the integrity of the property and its environment.

New additions and adjacent or related new construction will be undertaken in such a manner that, if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

Rehabilitation as a Treatment

When repair and replacement of deteriorated features are necessary; when alterations or additions to the property are planned for a new or continued use; and when its depiction at a particular period of time is not appropriate, Rehabilitation may be considered as a treatment.
Appendix A. Part 2. The Secretary of the Interior’s Standards

The Guidelines for the Treatment of Historic Properties illustrate the practical application of these treatment standards to historic properties. These Guidelines are also available in PDF format.

The Guidelines for the Treatment of Cultural Landscapes apply these treatment standards to historic cultural landscapes.

B3 Standards for Restoration

A property will be used as it was historically or be given a new use which reflects the property’s restoration period.

Materials and features from the restoration period will be retained and preserved. The removal of materials or alteration of features, spaces, and spatial relationships that characterize the period will not be undertaken.

Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate and conserve materials and features from the restoration period will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.

Materials, features, spaces, and finishes that characterize other historical periods will be documented prior to their alteration or removal.

Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize the restoration period will be preserved.

Deteriorated features from the restoration period will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials.

Replacement of missing features from the restoration period will be substantiated by documentary and physical evidence. A false sense of history will not be created by adding conjectural features, features from other properties, or by combining features that never existed together historically.

Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

Archeological resources affected by a project will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

Designs that were never executed historically will not be constructed.

Restoration as a Treatment

When the property’s design, architectural, or historical significance during a particular period of time outweighs the potential loss of extant materials, features, spaces, and finishes that characterize other historical periods; when there is substantial physical and documentary evidence for the work; and when contemporary alterations and additions are not planned, Restoration may be considered as a treatment. Prior to undertaking work, a particular period of time, i.e., the restoration period, should be selected and justified, and a documentation plan for Restoration developed.

The Guidelines for the Treatment of Historic Properties illustrate the practical application of these treatment standards to historic properties. These Guidelines are also available in PDF format.

The Guidelines for the Treatment of Cultural Landscapes apply these treatment standards to historic cultural landscapes.
Appendix B. Information & Advice

Part 1. Arranged by Subject
[Section & Chapter noted]

www.nps.gov/history/nr/publications/bulletins/nrb16a/nrb16a_appendix_IV.htm

WHY PRESERVE HISTORIC BUILDINGS & NEIGHBORHOODS [SECTION 1]
http://books.google.com/books?id=7pnzAAAAMAAJ&q=william+j+murtagh&dq=william+j+murtagh&hl=en&sa=X&ei=tHq_UazlNIWQyQGPrIGADw&ved=0CC8Q6AEwAA

www.cr.nps.gov/nr/about.htm

National Park Service. Tax Incentives Program
www.nps.gov/tps/tax-incentives.htm

SUSTAINABILITY & THE ENVIRONMENT
National Park Service. Technical Preservation Services. Sustainability
www.nps.gov/tps/sustainability.htm

www.nps.gov/tps/sustainability/energy-efficiency.htm

www.nps.gov/tps/sustainability/new-technology.htm

www.nps.gov/tps/sustainability/case-studies.htm#fuller-paint

National Park Service. Technical Preservation Services. Research
www.nps.gov/tps/sustainability/research.htm

National Park Service. Technical Preservation Services. Resources
www.nps.gov/tps/sustainability/resources.htm

National Trust for Historic Preservation. Weatherization

National Trust for Historic Preservation. Sustainability
http://www.preservationnation.org/information-center/sustainable-communities/creating/#.Ub9-oZ3nabg
http://www.preservationnation.org/information-center/sustainable-communities/green-lab/#.Ub9-753nabg

ECONOMIC VITALITY & EMPLOYMENT
Advisory Council on Historic Preservation. Economic Impact of Historic Preservation
www.achp.gov/economicstudies.html

National Trust for Historic Preservation. Community Revitalization
http://www.preservationnation.org/issues/gulf-coast-recovery/community-revitalization-news.html#.Ub9_o3nabg

INCENTIVES [SECTION 2]
National Park Service. Technical Preservation Services. Incentives
http://www.nps.gov/tps/tax-incentives.htm

HISTORIC PRESERVATION PRINCIPLES [SECTION 3]
National Park Service. Technical Preservation Services. Online Training & Information
www.nps.gov/tps/education/online-training.htm
Appendix B. Part 1. Arranged by Subject

HISTORIC CONTEXT & ARCHITECTURAL STYLES [SECTION 4]
http://heritage.utah.gov/history/historic-architecture-guide
http://utahhistory.sdlhost.com/#/item/000000011019963/view

http://books.google.com/books?id=ehzSlgEACAAJ&dq=virginia+%26+lee+mcalester&hl=en&sa=X&ei=HIK_UavBIj4Hg4wHjr4HoDQ&ved=0CDcQ6AEwAA

SITE FEATURES [CHAPTER 1]

MATERIALS [CHAPTER 2]
Masonry & Ceramics
http://www.nps.gov/tps/how-to-preserve/briefs/7-terra-cotta.htm

http://www.nps.gov/tps/how-to-preserve/briefs/22-stucco.htm


http://www.nps.gov/tps/how-to-preserve/briefs/1-cleaning-water-repellent.htm


http://www.nps.gov/tps/how-to-preserve/briefs/6-dangers-abrasive-cleaning.htm

http://www.nps.gov/tps/how-to-preserve/briefs/12-structural-glass.htm

Wood

Appendix B.  Part 1. Arranged by Subject


See also “Utah’s Historic Architecture” Glossary http://utahhistory.sdhost.com/#/item/0000000101019963/view

**Metals**


**Cleaning & Repair**


**Energy Efficiency**


**Other**

Appendix B. Part 1. Arranged by Subject

WINDOWS [CHAPTER 3]

Maintenance, Repair, Weatherization & Energy Efficiency

http://www.oldhouseonline.com/how-to-restore-sash-windows/
http://www.oldhouseonline.com/window-repair-tips-from-john-leeke/
www.oldhousejournal.com/magazine/1506

www.nps.gov/tps/sustainability/energy-efficiency/weatherization/windows-doors.htm
www.nps.gov/tps/sustainability/research.htm
www.nps.gov/tps/sustainability/resources.htm

National Trust for Historic Preservation.
Weatherization
http://www.preservationnation.org/information-center/sustainable-communities/buildings/weatherization/windows/#.Ub-Wx53nabg

Historic Scotland. Managing Change in the Historic Environment - Windows. 2010
http://www.historic-scotland.gov.uk/windows.pdf


http://www.nps.gov/tps/how-to-preserve/briefs/9-wooden-windows.htm

http://www.nps.gov/tps/how-to-preserve/briefs/13-steel-windows.htm


http://www.nps.gov/tps/how-to-preserve/briefs/33-stained-leaded-glass.htm

Appendix B. Part 1. Arranged by Subject


**Replacement Windows**


**DOORS** [CHAPTER 4]


**PORCHES** [CHAPTER 5]


Appendix B. Part 1. Arranged by Subject

ARCHITECTURAL DETAILS [CHAPTER 6]

One of the best sources for historic photographs is Salt Lake County Records Management, which maintains early tax photographs for thousands of buildings

http://admin.slco.org/archives/

ROOFS [CHAPTER 7]


http://www.nps.gov/tps/how-to-preserve/briefs/30-clay-tile-roofs.htm


http://www.nps.gov/tps/how-to-preserve/briefs/29-slate-roofs.htm


http://www.nps.gov/tps/how-to-preserve/briefs/4-roofing.htm


http://www.nps.gov/tps/how-to-preserve/briefs/19-wooden-shingle-roofs.htm

ADDITIONS [CHAPTER 8]


http://www.nps.gov/tps/how-to-preserve/briefs/14-exterior-additions.htm


ACCESSORY STRUCTURES [CHAPTER 9]

Miller, Lisa. Garages in Salt Lake City’s Avenues Historic District. Published by the Utah Heritage Foundation
Appendix B.  Part 2. Arranged by Key Website


**SEISMIC RETROFITTING**  [CHAPTER 10]  
Utah Division of State History, Office of Preservation. “Bracing for the Big One: Seismic Retrofit of Historic Houses.”. 1993  
http://heritage.utah.gov/history/earthquake

http://www.preservationnation.org/resources/technical-assistance/disaster-recovery/earthquakes.html#Ub-k2p3nabg

http://www.nps.gov/tps/how-to-preserve/briefs/41-seismic-retrofit.htm

**COLOR**  [CHAPTER 11]  
http://books.google.com/books?id=BsxfPQAACAAJ&dq=roger+moss+victorian&hl=en&sa=X&ei=OXnAUdeNH6Ha_yAGx3oHQCg&ved=0CD8Q6AEwAw

www.barnesandnoble.com/w/old-house-colors-lawrence-schwin/1015622126

www.jstor.org/pss/1493914

Freeman, John Crosby. “Living Life in Colors: Paint Colors for Historic Homes”, *Old-House Journal*  
http://www.oldhousejournal.com/living_life_in_colors/magazine/1522

**NEW CONSTRUCTION**  [CHAPTER 12]  
**AVENUES**  [CHAPTER 13]  
http://books.google.com/books?id=Nz89twAACAAJ&q=cevan+lesieur&hl=en&sa=X&ei=woDAUZ8up8nJAYrBgPAO&ved=0CDQQ6AEwAQ

LeSieur, Cevan  The Avenues. Images of America. Published by Arcadia Publishing. 2012  
http://books.google.com/books?id=Emm1CJJGe14C&q=cevan+lesieur&hl=en&sa=X&ei=woDAUZ8up8nJAYrBgPAO&ved=0CC8Q6AEwAA#v=onepage&q=cevan%20lesieur&f=false

**CAPITOL HILL**  [CHAPTER 14]  
**CENTRAL CITY**  [CHAPTER 15]  
**SOUTH TEMPLE**  [CHAPTER 16]  
Lester, Margaret D.  Brigham Street. Published by Utah State Historical Society. 1979  
http://books.google.com/books?id=EZhCPQAACAAJ&q=margaret+lester+brigham+street&hl=en&sa=X&ei=uyHAuUaBLOX8yQGU84DAAg&ved=0CC0Q6AEwAA

**UNIVERSITY**  [CHAPTER 17]  
http://pdfhost.focus.nps.gov/docs/NRHP/Text/95001430.pdf

**WESTMORELAND PLACE**  [CHAPTER 18]
Appendix B.  Part 2. Arranged by Key Website

Part 2. Arranged by Key Website

SALT LAKE CITY CORPORATION – PLANNING & HISTORIC PRESERVATION
http://www.slcgov.com/planning
http://www.slcgov.com/historicpreservation

NATIONAL PARK SERVICE – TECHNICAL PRESERVATION SERVICES
http://ncptt.nps.gov/

STATE HISTORIC PRESERVATION OFFICE, UTAH
http://heritage.utah.gov/history/historic-buildings
National Register of Historic Places
http://heritage.utah.gov/history/national-register
Research
http://heritage.utah.gov/history/info-resources-hist-bldgs
Certified Local Government
http://heritage.utah.gov/history/clgs
Financial Assistance
http://heritage.utah.gov/history/tax-credits
Historic Preservation Contractor Directory
http://heritage.utah.gov/history/utah-preservation-contractor-directory
Utah’s Historic Architecture Guide
http://heritage.utah.gov/history/historic-architecture-guide
Preservation Organizations
http://heritage.utah.gov/history/preservation-organizations
Publications
http://heritage.utah.gov/history/rehabilitation-information

UTAH HERITAGE FOUNDATION
http://www.utahheritagefoundation.com/
Financial Assistance
http://www.utahheritagefoundation.com/preservation-resources/financial-resources
Resources
http://www.utahheritagefoundation.com/preservation-resources
Tours and Events
http://www.utahheritagefoundation.com/tours-and-events
Awards
http://www.utahheritagefoundation.com/saving-places/heritage-awards
Celebrating Compatible Design. Creating New Spaces in Historic Homes. 2008

NATIONAL TRUST FOR HISTORIC PRESERVATION
http://www.preservationnation.org/
Appendix B. Part 3. Preservation Briefs

Preservation Technical Services, National Park Service

www.nps.gov/tps/how-to-preserve/briefs.htm

Preservation Briefs help historic building owners recognize and resolve common problems prior to work.

The briefs are especially useful to Historic Preservation Tax Incentives Program applicants because they recommend methods and approaches for rehabilitating historic buildings that are consistent with their historic character.

Some of the web versions of the Preservation Briefs differ somewhat from the printed versions. Many illustrations are new and in color rather than black and white; Captions are simplified and some complex charts are omitted. To order hard copies of the Briefs, see Printed Publications.

http://www.nps.gov/tps/how-to-preserve/briefs/1-cleaning-water-repellent.htm

http://www.nps.gov/tps/how-to-preserve/briefs/2-repoint-mortar-joints.htm

3 Hensley, Jo Ellen and Aguilar, Antonio. Improving Energy Efficiency in Historic Buildings. 2011
http://www.nps.gov/tps/how-to-preserve/briefs/3-improve-energy-efficiency.htm

4 Sweetser, Sarah M. Roofing for Historic Buildings. 1978
http://www.nps.gov/tps/how-to-preserve/briefs/4-roofing.htm

5 The Preservation of Historic Adobe Buildings. 1978
http://www.nps.gov/tps/how-to-preserve/briefs/5-adobe-buildings.htm

Resources for Homeowners
www.preservationnation.org/resources/homeowners/

Sustainable Communities
http://www.preservationnation.org/information-center/sustainable-communities/#.UcM0mp3nbKc

Community Revitalization
http://www.preservationnation.org/information-center/economics-of-revitalization/#.UcCS_53nbKc
http://www.preservationnation.org/issues/housing/Rebuilding_Community.pdf

ADVISORY COUNCIL ON HISTORIC PRESERVATION
http://www.achp.gov/

Economic Impact of Historic Preservation
www.achp.gov/economicstudies.html

NATIONAL ALLIANCE OF PRESERVATION COMMISSIONS
http://napc.uga.edu/

Preservation Resources & Links
http://napc.uga.edu/resources-links/

THE ASSOCIATION FOR PRESERVATION TECHNOLOGY INTERNATIONAL
www.apti.org/

Publications
http://www.apti.org/publications/publications/

Resources
www.apti.org/publications/tech-publications.cfm

PRESERVATION TRADES NETWORK
http://www.ptn.org/

WINDOW PRESERVATION STANDARDS COLLABORATIVE
http://ptnresource.org/WPSC/

NATIONAL PRESERVATION INSTITUTE
www.npi.org/
Appendix B. Part 3. Preservation Briefs

6 Grimmer, Anne E. Dangers of Abrasive Cleaning to Historic Buildings. 1979  
http://www.nps.gov/tps/how-to-preserve/briefs/6-dangers-abrasive-cleaning.htm

http://www.nps.gov/tps/how-to-preserve/briefs/7-terra-cotta.htm

8 Myers, John H., revised by Gary L. Hume.  

http://www.nps.gov/tps/how-to-preserve/briefs/9-wooden-windows.htm

10 Weeks, Kay D. and David W. Look, AIA. Exterior Paint Problems on Historic Woodwork. 1982  
http://www.nps.gov/tps/how-to-preserve/briefs/10-paint-problems.htm

11 Jandl, H. Ward. Rehabilitating Historic Storefronts. 1982  
http://www.nps.gov/tps/how-to-preserve/briefs/11-storefronts.htm

12 The Preservation of Historic Pigmented Structural Glass (Vitrolite and Carrara Glass). 1984  
http://www.nps.gov/tps/how-to-preserve/briefs/12-structural-glass.htm

13 Park, Sharon C., AIA. The Repair and Thermal Upgrading of Historic Steel Windows. 1984  
http://www.nps.gov/tps/how-to-preserve/briefs/13-steel-windows.htm

http://www.nps.gov/tps/how-to-preserve/briefs/14-exterior-additions.htm

15 Gaudette, Paul and Deborah Slaton. Preservation of Historic Concrete. 2006  

16 Park, Sharon C., AIA. The Use of Substitute Materials on Historic Building Exteriors. 1988  
http://www.nps.gov/tps/how-to-preserve/briefs/16-substitute-materials.htm

17 Nelson, Lee H., FAIA. Architectural Character — Identifying the Visual Aspects of Historic Buildings as an Aid to Preserving their Character. 1988  

http://www.nps.gov/tps/how-to-preserve/briefs/18-rehabilitating-interiors.htm

19 Park, Sharon C., AIA. The Repair and Replacement of Historic Wooden Shingle Roofs. 1989  
http://www.nps.gov/tps/how-to-preserve/briefs/19-wooden-shingle-roofs.htm

20 Auer, Michael J. The Preservation of Historic Barns. 1989  
http://www.nps.gov/tps/how-to-preserve/briefs/20-barns.htm

21 MacDonald, Mary Lee. Repairing Historic Flat Plaster—Walls and Ceilings. 1989  
http://www.nps.gov/tps/how-to-preserve/briefs/21-flat-plaster.htm

22 Grimmer, Anne. The Preservation and Repair of Historic Stucco. 1990  
http://www.nps.gov/tps/how-to-preserve/briefs/22-stucco.htm

23 Flaharty, David. Preserving Historic Ornamental Plaster. 1990  

24 Park, Sharon C., AIA. Heating, Ventilating, and Cooling Historic Buildings: Problems and Recommended Approaches. 1991  

25 Auer, Michael J. The Preservation of Historic Signs. 1991  
http://www.nps.gov/tps/how-to-preserve/briefs/25-signs.htm

http://www.nps.gov/tps/how-to-preserve/briefs/27-cast-iron.htm

28 Chase, Sara B. *Painting Historic Interiors*. 1992

29 Levine, Jeffrey S. *The Repair, Replacement, and Maintenance of Historic Slate Roofs*. 1992
http://www.nps.gov/tps/how-to-preserve/briefs/29-slate-roofs.htm

http://www.nps.gov/tps/how-to-preserve/briefs/30-clay-tile-roofs.htm

31 Park, Sharon C., AIA. *Mothballing Historic Buildings*. 1993
http://www.nps.gov/tps/how-to-preserve/briefs/31-mothballing.htm

32 Jester, Thomas C. and Sharon C. Park, AIA. *Making Historic Properties Accessible*. 1993
http://www.nps.gov/tps/how-to-preserve/briefs/32-accessibility.htm

http://www.nps.gov/tps/how-to-preserve/briefs/33-stained-leaded-glass.htm

http://www.nps.gov/tps/how-to-preserve/briefs/34-composition-ornament.htm

http://www.nps.gov/tps/how-to-preserve/briefs/35-architectural-investigation.htm

http://www.nps.gov/tps/how-to-preserve/briefs/36-cultural-landscapes.htm

37 Park, Sharon C., AIA, and Douglas C. Hicks. *Appropriate Methods of Reducing Lead-Paint Hazards in Historic Housing*. 2006

38 Weaver, Martin E. *Removing Graffiti from Historic Masonry*. 1995
http://www.nps.gov/tps/how-to-preserve/briefs/38-remove-graffiti.htm

39 Park, Sharon C., AIA. *Holding the Line: Controlling Unwanted Moisture in Historic Buildings*. 1996


http://www.nps.gov/tps/how-to-preserve/briefs/41-seismic-retrofit.htm


http://www.nps.gov/tps/how-to-preserve/briefs/43-historic-structure-reports.htm

http://www.nps.gov/tps/how-to-preserve/briefs/44-awnings.htm

http://www.nps.gov/tps/how-to-preserve/briefs/45-wooden-porches.htm
Appendix B


http://www.nps.gov/tps/how-to-preserve/briefs/47-maintaining-exteiors.htm
Appendix C. Glossary of Terms

See also “Utah’s Historic Architecture” Glossary
http://utahhistory.sdlhost.com/#/item/0000000110119963/view

Procedural Definitions

Certificate of Appropriateness A document issued by the Historic Landmark Commission (HLC) allowing an applicant or owner to proceed with a proposed alteration, demolition, or new construction in Locally-designated historic district or on property listed in the Salt Lake City Register of Cultural Resources, following a determination of the proposal’s suitability according to applicable criteria.

Process The established procedures followed by the HLC, Salt Lake City Planning staff and other City departments. These procedures may be established by City ordinance, the Commission, or professional planning practice.

Public notice Notice provided to interested parties before a commission takes action.

Technical Definitions

Adaptive Use The reuse of a building or structure, usually for purposes different from the original use such as residence converted into offices.

Addition New construction added to an existing building or structure.

Alteration Work that affects the exterior appearance of a property.

Building A structure with a roof, intended for shelter or enclosure such as a dwelling or garage.

Character The qualities and attributes of a building, structure, site, street or district. Character may include individual structures or the relationship between structures.

Configuration The arrangement of elements and details on a building, structure or site which help to define its character.

Compatible In harmony with surroundings.

Context The setting in which a historic element, site, building, structure, street, or district exists.

Demolition Any act which destroys a structure, either partially or entirely.

Demolition by Neglect The destruction of a building or structure through abandonment or lack of maintenance.
Appendix C. Glossary of Terms

Design Guidelines Criteria which provide direction to projects regarding design and help ensure that rehabilitation projects and new construction respect the character of designated buildings and districts.

Element A material part or detail of a site, building, structure, street, landscape or district.

Elevation Any one of the external vertical planes of a building. (or) An external vertical plane of a structure.

Fabric The physical material of a building, structure, site, or community conveying an interweaving of component parts.

Floor Area Ratio The relationship of the total floor area of a building to the land area of its site, as defined as a ratio in which the numerator is the floor area, and the denominator is the site area.

Historic District A geographically definable area with a significant concentration of buildings, structures, sites, spaces, or objects unified by past events, physical development, design, setting, materials, workmanship, sense of cohesiveness or related historical and aesthetic associations. The significance of a district may be recognized through listing in a local, state, or national landmarks register and may be protected legally through enactment of a local historic district ordinance administered by a historic district board or commission.

Historic Imitation New construction or rehabilitation where elements or components mimic an architectural style but are not of the same historic period as the existing buildings (historic replica).

Historic Landmark Commission The City’s governmental entity responsible for administering the criteria set forth in this document and in the Salt Lake City Zoning Ordinance (Section 21A.34.020) as they apply to locally-designated landmark sites and historic districts.

Infill New construction in historic districts on vacant lots or to replace existing buildings.

Landmark Site Any site included on the Salt Lake City Register of Cultural Resources. Such sites are of exceptional importance to the City, State, region or nation and impart high artistic, historic and/or cultural values.

Landscape The totality of the natural, built or human-influenced habitat experienced at any one place. Dominant features may be topography, plant cover, buildings, or other structures and their patterns.

Maintain To keep in an existing state of preservation or repair.

Mothballing Implementing temporary measures to stabilize and protect a building from deterioration and vandalism.

New construction Construction which is characterized by the introduction of new elements, sites, buildings, structures or additions to existing buildings and structures in historic areas and districts.

Preservation Generally, saving from destruction or deterioration old and historic buildings, sites, structures, and objects and providing for their continued use by means of restoration, rehabilitation, or adaptive use.

Proportion Harmonious relation of parts to one another or to the whole.

Protection The act or process of applying measures designed to affect the physical condition of a property by defending or guarding it from deterioration, loss or attack, or to cover or shield the property from danger of injury. In the case of buildings and structures, such treatment is generally of a temporary nature and anticipates future historic preservation treatment; in the case of archaeological sites, the protective measure may be temporary or permanent.
Appendix C. Glossary of Terms

Reconstruction  The act or process of reproducing by new construction the exact form and detail of a vanished building, structure, or object, or a part thereof, as is appeared at a specific period of time.

Rehabilitation  The act or process of returning a property or building to usable condition through repair, alteration, and/or preservation of its features which are significant to its historical, architectural, and cultural values.

Renovation  The act or process of returning a property to a state of utility through repair or alteration which makes possible a contemporary use.

Restoration  The act or process of returning a building’s appearance to a specific period of time by removing later work and by replacing missing earlier features to match the original.

Retain  To keep secure and intact. In the guidelines, “retain” and “maintain” describe the act of keeping an element, detail, or structure and continuing the same level of repair to aid in the preservation of elements, sites and structures.

Re-use  To use again. An element, detail, or structure might be reused in historic districts.

Rhythm  Movement or fluctuation marked by the regular occurrence or natural flow of related elements.

Scale  Proportional elements that demonstrate the size, materials, and style of buildings.

Setting  The sum of attributes of a locality, neighborhood, or property that defines its character.

Significant  Having particularly important associations within the contexts of architecture, history, and culture.

Stabilization  The act or process of applying measures to reestablish a weather resistant enclosure and the structural stability of a deteriorated property while maintaining its present form.

Streetscape  The distinguishing character of a particular street as created by its width, degree of curvature, paving materials, design of the street furniture, and forms of surrounding buildings.

Style  A type of architecture distinguished by special characteristics of structure and ornament and often related in time; also a general quality of a distinctive character.

Visual Continuity  A sense of unity or belonging together that elements of the built environment exhibit because of similarities among them.
Appendix C. Glossary of Terms

Architectural Terms

Alignment  The arrangement of objects along a straight line.

Apron  A decorative, horizontal trim piece on the lower portion of an architectural element.

Arch  A construction which spans an opening and supports the weight above it. (see flat arch, jack arch, segmental arch and semi-circular arch).

Ashlar  A square, hewn stone used in building. It also refers to a thick dressed, square stone used for facing brick walls, etc.

Attic  The upper level of a building, not of full ceiling height, directly beneath the roof.

Balcony  A platform projecting from the wall of an upper story, enclosed by a railing or balustrade, with an entrance from the building and supported by brackets, columns, or cantilevered out.

Baluster  One of a series of short, vertical, often vase-shaped members, used to support a stair or porch handrail, forming a balustrade.

Balustrade  An entire rail system with top rail and balusters.

Bargeboard  A board which hangs from the projecting end of a gable roof, covering the end rafters, and often sawn into a decorative pattern.

Bay  The portion of a facade between columns or piers providing regular divisions and usually marked by windows.

Bay window  A projecting window that forms an extension to the floor space of the internal rooms; usually extends to the ground level.

Belt course  A horizontal band usually marking the floor levels on the exterior facade of a building.

Board and batten  Siding fashioned of boards set vertically and covered where their edges join by narrow strips called battens.

Bond  A term used to describe the various patterns in which brick (or stone) is laid, such as “common bond” or “Flemish bond.”

Bracket  A projecting element of wood, stone or metal which spans between horizontal and vertical surfaces (eaves, shelves, overhangs) as decorative support.

Bulkhead  The structural panels just below display windows on storefronts. Bulkheads can be both supportive and decorative in design. 19th century bulkheads are often of wood construction with rectangular raised panels. 20th century bulkheads may be of wood, brick, tile, or marble construction. Bulkheads are also referred to as kickplates.

Came  Metal struts supporting leaded glass.

Canopy  A roofed structure constructed of fabric or other material placed so as to extend outward from a building providing a protective shield for doors, windows and other openings, supported by the building and supports extended to the ground directly under the canopy or cantilevered from the building.

Capital  The head of a column or pilaster.

Carrara Glass  Tinted glass widely used for storefront remodeling during the 1930s and 1940s. Carrara glass usually came in black, tan, or dark red colors.

Casement window  A window with one or two sashes which are hinged at the sides and usually open outward.

Clapboards  Horizontal wooden boards, thinner at the top edge, which are overlapped to provide a weather-proof exterior wall surface.

Classical order  Derived from Greek and Roman architecture, a column with its base, shaft, capital and entablature having standardized details and proportions, according to one of the five canonized modes Doric, Tuscan, Ionic, Corinthian, or Composite.
Appendix C. Glossary of Terms

**Clipped gable** A gable roof where the ends of the ridge are terminated in a small, diagonal roof surface.

**Column** A cylindrical or square vertical structural or ornamental member.

**Common bond** A brickwork pattern where most courses are laid flat, with the long “stretcher” edge exposed, but every fifth to eighth course is laid perpendicularly with the small “header” end exposes, to structurally tie the wall together.

**Corbel** In masonry, a projection, or one of a series of projections, each stepped progressively farther forward with height and articulating a cornice or supporting an overhanging member.

**Corinthian order** Most ornate classical order characterized by a capital with ornamental acanthus leaves and curled fern shoots.

**Cornice** The uppermost, projecting part of an entablature, or feature resembling it. Any projecting ornamental molding along the top of a wall, building, etc.

**Cresting** A decorated ornamental finish along the top of a wall or roof, often made of ornamental metal.

**Cross-gable** A secondary gable roof which meets the primary roof at right angles.

**Dentils** A row of small tooth-like blocks in a classical cornice.

**Doric order** A classical order with simple, unadorned capitals, and with no base.

**Dormer window** A window that projects from a roof.

**Double-hung window** A window with two sashes, one sliding vertically over the other.

**Eave** The edge of a roof that projects beyond the face of a wall.

**EIFS** Stands for “Exterior Insulating and Finish System.” This is a process by which a styrene board is adhered to wall sheathing and an elastomeric, synthetic stucco is applied. At this writing EIFS is generally referred to as “dryvit,” but this is a brand name.

**Ell** The rear wing of a house, generally one room wide and running perpendicular to the principal building.

**Engaged column** A column that is in direct contact with a wall; at least half of the column extends beyond the plane of the wall to which it is attached.

**Entablature** A part of a building of classical order resting on the column capital; consists of an architrave, frieze, and cornice.

**Facade** Any of the exterior faces of a building.

**False Front** A front wall which extends beyond the sidewalls of a building to create a more imposing facade.

**Fanlight** A semi-circular window usually over a door with radiating muntins suggesting a fan.

**Fascia** A projecting flat horizontal member or molding; forms the trim of a flat roof or a pitched roof; also a part of a classical entablature.

**Fenestration** The arrangement of windows and other exterior openings on a building.

**Finial** A projecting decorative element at the top of a roof turret or gable.

**Fishscale shingles** A decorative pattern of wall shingles composed of staggered horizontal rows of wooden shingles with half-round ends.

**Flashing** Thin metal sheets used to prevent moisture infiltration at joints of roof planes and between the roof and vertical surfaces.

**Flat arch** An arch whose wedge-shaped stones or bricks are set in a straight line; also called a jack arch.
Appendix C. Glossary of Terms

Flemish bond  A brick-work pattern where the long “stretcher” edge of the brick is alternated with the small “header” end for decorative as well as structural effectiveness.

Fluting  Shallow, concave grooves running vertically on the shaft of a column, pilaster, or other surface.

Foundation  The lowest exposed portion of the building wall, which supports the structure above.

Frieze  The middle portion of a classical cornice; also applied decorative elements on an entablature or parapet wall.

Gable  The triangular section of a wall to carry a pitched roof.

Gable roof  A pitched roof with one downward slope on either side of a central, horizontal ridge.

Gambrel roof  A ridged roof with two slopes on either side.

Ghosts  Outlines or profiles of missing buildings or building details. These outlines may be visible through stains, paint, weathering, or other residue on a building’s facade or side elevation.

Guardrail  A building component or a system of building components located at or near the open sides of elevated walking surfaces that minimizes the possibilities of a fall from the walking surface to a lower level.

Handrail  A horizontal or sloping rail intended for grasping by the hand for guidance or support.

Hipped roof  A roof with uniform slopes on all sides.

Hood molding  A projecting molding above an arch, doorway, or window, originally designed to direct water away from the opening; also called a drip mold.

Ionic order  One of the five classical orders used to describe decorative scroll capitals.

Jack arch (see Flat arch)

Joist  One of the horizontal wood beams that support the floors or ceilings of a house. They are set parallel to one another—usually from 1’0” to 2’0” apart—and span between supporting walls or larger wood beams.

Keystone  The wedge-shaped top or center member of an arch.

Knee brace  An oversize bracket supporting a cantilevered or projecting element.

Lancet Window  A narrow, vertical window that ends in a point.

Lap Siding  See clapboards.

Lintel  The horizontal top member of a window, door, or other opening.

Luxfer glass  A glass panel made up of small leaded glass lights either clear or tinted purple. These panels were widely used for storefront transoms during the early 20th century.

Mansard roof  A roof with a double slope on all sides, with the lower slope being almost vertical and the upper almost horizontal.

Masonry  Work using brick, stone, concrete block, tile, adobe or similar materials.

Massing  The three-dimensional form of a building.

Metal standing seam roof  A roof composed of overlapping sections of metal such as copper-bearing steel or iron coated with a terne alloy of lead and tin. These roofs were attached or crimped together in various raised seams for which the roof are named.

Modillion  A horizontal bracket, often in the form of a plain block, ornamenting, or sometimes supporting, the underside of a cornice.

Mortar  A mixture of sand, lime, (and in more modern structures, cement), and water used as a binding agent in masonry construction.
Appendix C. Glossary of Terms

**Molding** A decorative band or strip of material with a constant profile or section designed to cast interesting shadows. It is generally used in cornices and as trim around window and door openings.

**Mullion** A heavy vertical divider between windows or doors.

**Multi-light window** A window sash composed of more than one pane of glass.

**Muntin** A secondary framing member to divide and hold the panes of glass in multi-light window or glazed door.

**Oriel window** A bay window which emerges above the ground floor level, generally supported by brackets or corbels.

**Paired columns** Two columns supported by one pier, as on a porch.

**Palladian window** A window with three openings, the central one arched and wider than the flanking ones.

**Paneled door** A door composed of solid panels (either raised or recessed) held within a framework of rails and stiles.

**Parapet** A low horizontal wall at the edge of a roof.

**Pediment** A triangular crowning element forming the gable of a roof; any similar triangular element used over windows, doors, etc.

**Pier** A vertical structural element, square or rectangular in cross-section.

**Pilaster** A rectangular pillar attached, but projecting from a wall, resembling a classical column.

**Pitch** The degree of the slope of a roof.

**Pony wall** Low wall, between 24” to 36” high, that are used to enclose porches or balconies. Also known as “wing” walls.

**Portico** A roofed space, open or partly enclosed, forming the entrance and centerpiece of the facade of a building, often with columns and a pediment.

**Portland cement** A strong, inflexible hydraulic cement used to bind mortar.

**Post** A piece of wood, metal, etc., usually long and square or cylindrical, set upright to support a building, sign, gate, etc.; pillar; pole.

**Pressed tin** Decorative and functional metalwork made of molded tin used to sheath roofs, bays, and cornices.

**Pyramidal roof** A roof with four identical sides rising to a central peak.

**Quoins** A series of stone, bricks, or wood panels ornamenting the outside of a wall.

**Rafter** Any of the beams that slope from the ridge of a roof to the eaves and serve to support the roof.

**Ridge** The top horizontal member of a roof where the sloping surfaces meet.

**Roof** The top covering of a building. Following are some types:

- **Gable** roof has a pitched roof with ridge and vertical ends.

- **Hip** roof has sloped ends instead of vertical ends.

- **Shed** roof (lean-to) has one slope only and is built against a higher wall.

- **Clipped gable or hipped gable** is similar to gable but with the end clipped back.

- **Gambrel** roof is a variation of a gable roof, each side of which has a shallower slope above a steeper one.

- **Mansard** roof is a roof with a double slope; the lower slope is steeper than the upper.
**Rusticated**  Roughening of stonework of concrete blocks to give greater articulation to each block.

**Sash**  The moveable framework containing the glass in a window.

**Segmental arch**  An arch whose profile or radius is less than a semicircle.

**Semi-circular arch**  An arch whose profile or radius is a half-circle the diameter of which equals the opening width.

**Shape**  The general outline of a building or its facade.

**Sheathing**  An exterior covering of boards of other surface applied to the frame of the structure. (see Siding)

**Shed roof**  A gently-pitched, almost flat roof with only one slope.

**Sidelight**  A vertical area of fixed glass on either side of a door or window.

**Siding**  The exterior wall covering or sheathing of a structure.

**Sill**  The bottom crosspiece of a window frame.

**Soffit**  The underside of a structural part, as of a beam, arch, etc.

**Spindles**  Slender, elaborately turned wood dowels or rods often used in screens and porch trim.

**Stile**  A vertical piece in a panel or frame, as of a door or window.

**Stretcher bond**  A brickwork pattern where courses are laid flat with the long “stretcher” edge exposed.

**Stucco**  An exterior wall covering that consists of lime, cement and sand, applied directly or over a wood or metal lath. It is usually applied in three coats.

**Surround**  An encircling border or decorative frame, usually at windows or doors.

**Swag**  Carved ornament on the form of a cloth draped over supports, or in the form of a garland of fruits and flowers,

**Terra-cotta**  Decorative building material of baked clay. Terra-cotta was often glazed in various colors and textures. Terra-cotta was widely used for cornices, inset panels, and other decorative facade elements from ca. 1880 to 1930.

**Transom**  A horizontal opening (or bar) over a door or window.

**Trim**  The decorative framing of openings and other features on a facade.

**Turret**  A small slender tower.

**Veranda**  A covered porch or balcony on a building’s exterior.

**Vergeboard**  The vertical face board following and set under the roof edge of a gable, sometimes decorated by carving.

**Vernacular**  A regional form or adaptation of an architectural style.

**Wall dormer**  Dormer created by the upward extension of a wall and a breaking of the roofline.

**Water table**  A projecting horizontal ledge, intended to prevent water from running down the face of a wall’s lower section.

**Weatherboard**  Wood siding consisting of overlapping boards usually thicker at one edge than the other.

**Window Parts**  The moving units of a window are known as sashes and move within the fixed frame. The sash may consist of one large pane of glass or may be subdivided into smaller panes by thin members called muntins or glazing bars. Sometimes in nineteenth-century houses windows are arranged side by side and divided by heavy vertical wood members called mullions. For a diagram of window parts, see PART II 3 : 5.